一、似然估计
我们要做的是对一些数据进行参数拟合, 然后进行预测的过程。 在这个过程谁都想要得到最好的参数,并且能够抗干扰性强一些,因此这里就要考虑各种求参数的方法了。
对于线性回归,其一般形式为

一般都会有截距项w0, 因此在进行估计的时候,我们都会对数据x , 在首列添加1. 进而估计参数w0.
拟合毕竟是估计, 总要存在残差的,因此残差的分布我们经常假设为
线性回归可写为:

其中
,
对于基函数的形式,我们可以进行扩展 :
, 这时我们仍然认为这是 关于w 的线性回归。
进行参数求解自然想到极大似然估计, 即

假设数据是iid, 这样似然函数为:

极大似然可等价写作极小负log 似然损失 (NLL)

我们将 概率模型
带入似然函数中有: