Python 实现股票指标计算——VR

VR (Volume Ratio) - 成交量变异率

1 公式

  • AV = 股价上升日成交量;AVS = N日内AV求和
  • BV = 股价下跌日成交量;BVS = N日内BV求和
  • CV = 股价平盘日成交量;CVS = N日内CV求和
  • VR = (AVS+1/2CVS) ➗ (BVS+1/2CVS) ✖ 100
  • MAVR = VR的M日简单移动平均

2 数据准备

我们以科创50指数 000688 为例,指数开始日期为2019-12-31,数据格式如下:

3 计算过程

def calculate_vr(df: pd.DataFrame, N=26, M=6):
    '''
    计算Volume Ratio (VR) 指标和其M天移动平均线 MAVR。

    参数:
    df (pd.DataFrame): 包含至少'close'和'volume'列的DataFrame,分别代表收盘价和成交量。
    N (int): 用于计算VR指标的时间窗口大小,默认为26。
    M (int): 用于计算MAVR的时间窗口大小,默认为6。

    返回:
    pd.DataFrame: 包含VR和MAVR值的DataFrame。
    '''

    # 创建一个df的副本以避免修改原始数据
    data = df.copy()

    # 计算每日收盘价的变化
    data['diff'] = data['close'].diff()

    # 根据收盘价的变化,将成交量分为三类:
    # av (Accumulation Volume) - 上涨时的成交量
    # dv (Distribution Volume) - 下跌时的成交量
    # uv (Unchanged Volume) - 收盘价不变时的成交量
    data['av'] = np.where(data['diff'] > 0, data['volume'], 0)
    data['dv'] = np.where(data['diff'] < 0, abs(data['volume']), 0)
    data['uv'] = np.where(data['diff'] == 0, data['volume'], 0)

    # 计算过去N天的AV, DV, UV的滚动求和
    avs = data['av'].rolling(N, min_periods=M).sum()
    dvs = data['dv'].rolling(N, min_periods=M).sum()
    uvs = data['uv'].rolling(N, min_periods=M).sum()

    # 计算VR指标
    # VR = (AV_sum + 0.5 * UV_sum) / (DV_sum + 0.5 * UV_sum) * 100
    vr = (avs + 0.5 * uvs) / (dvs + 0.5 * uvs) * 100
    data['vr'] = vr

    # 计算VR指标的M天移动平均线 MAVR
    data['mavr'] = data['vr'].rolling(M).mean()

    # 返回包含VR和MAVR指标的DataFrame
    return data

4 注意事项

参数N=26,M=6时与东方财富软件中一致

雪球无此指标

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值