Python 实现股票指标计算——KDJ

KDJ (Stochastic Indicator) - 随机指标

1 公式

RSV:=(CLOSE-LLV(LOW,N))/(HHV(HIGH,N)-LLV(LOW,N))*100;
K:SMA(RSV,M1,1);
D:SMA(K,M2,1);
J:3*K-2*D;

2 数据准备

我们以科创50指数 000688 为例,指数开始日期为2019-12-31,数据格式如下:

3 计算过程

def calculate_kdj(df: pd.DataFrame, N=9, M1=3, M2=3):
    '''
    计算 KDJ 技术指标。

    参数:
    df (pd.DataFrame): 包含至少 'high', 'low', 'close' 列的 DataFrame,
                       分别代表每日最高价、最低价和收盘价。
    N (int): 用于计算 RSV 的时间窗口大小,默认为9。
    M1 (int): 用于计算 K 值的指数加权移动平均 (EWMA) 的平滑因子,默认为3。
    M2 (int): 用于计算 D 值的指数加权移动平均 (EWMA) 的平滑因子,默认为3。

    返回:
    pd.DataFrame: 包含 K, D, 和 J 值的 DataFrame。
    '''

    # 创建一个df的副本以避免修改原始数据
    data = df.copy()

    # 计算 N 周期内的最低价 LLV 和最高价 HHV
    ln = data['low'].rolling(N, min_periods=1).min()
    hn = data['high'].rolling(N, min_periods=1).max()

    # 计算 RSV (Relative Strength Value)
    rsv = (data['close'] - ln) / (hn - ln) * 100

    # 计算 K 值,使用指数加权移动平均 (EWMA)
    k = rsv.ewm(alpha=1/M1, adjust=False).mean()

    # 计算 D 值,同样使用指数加权移动平均 (EWMA)
    d = k.ewm(alpha=1/M2, adjust=False).mean()

    # 计算 J 值
    j = 3 * k - 2 * d

    # 将计算出的 K, D, 和 J 值添加到 DataFrame
    data['k'] = k
    data['d'] = d
    data['j'] = j

    # 返回包含所有计算出指标的 DataFrame
    return data

4 注意事项

参数N=9,M1=3,M2=3时,计算结果与东方财富软件中不一致

与雪球不一致

与通信达一致

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值