KDJ (Stochastic Indicator) - 随机指标
1 公式
RSV:=(CLOSE-LLV(LOW,N))/(HHV(HIGH,N)-LLV(LOW,N))*100;
K:SMA(RSV,M1,1);
D:SMA(K,M2,1);
J:3*K-2*D;
2 数据准备
我们以科创50指数 000688 为例,指数开始日期为2019-12-31,数据格式如下:
3 计算过程
def calculate_kdj(df: pd.DataFrame, N=9, M1=3, M2=3):
'''
计算 KDJ 技术指标。
参数:
df (pd.DataFrame): 包含至少 'high', 'low', 'close' 列的 DataFrame,
分别代表每日最高价、最低价和收盘价。
N (int): 用于计算 RSV 的时间窗口大小,默认为9。
M1 (int): 用于计算 K 值的指数加权移动平均 (EWMA) 的平滑因子,默认为3。
M2 (int): 用于计算 D 值的指数加权移动平均 (EWMA) 的平滑因子,默认为3。
返回:
pd.DataFrame: 包含 K, D, 和 J 值的 DataFrame。
'''
# 创建一个df的副本以避免修改原始数据
data = df.copy()
# 计算 N 周期内的最低价 LLV 和最高价 HHV
ln = data['low'].rolling(N, min_periods=1).min()
hn = data['high'].rolling(N, min_periods=1).max()
# 计算 RSV (Relative Strength Value)
rsv = (data['close'] - ln) / (hn - ln) * 100
# 计算 K 值,使用指数加权移动平均 (EWMA)
k = rsv.ewm(alpha=1/M1, adjust=False).mean()
# 计算 D 值,同样使用指数加权移动平均 (EWMA)
d = k.ewm(alpha=1/M2, adjust=False).mean()
# 计算 J 值
j = 3 * k - 2 * d
# 将计算出的 K, D, 和 J 值添加到 DataFrame
data['k'] = k
data['d'] = d
data['j'] = j
# 返回包含所有计算出指标的 DataFrame
return data
4 注意事项
参数N=9,M1=3,M2=3时,计算结果与东方财富软件中不一致
与雪球不一致
与通信达一致