一、什么是数据结构?什么是算法?
- 从广义上讲,数据结构就是指一组数据的存储结构。算法就是操作数据的一组方法
- 从狭义上讲,指某些著名的数据结构和算法,比如队列、栈、堆、二分查找、动态规划等
- 数据结构是为算法服务的,算法要作用在特定的数据结构之上
二、复杂度分析
掌握一个数据结构与算法中最重要的概念——复杂度分析
三、涵盖内容
- 20个最常用的、最基础数据结构与算法
10个数据结构:数组、链表、栈、队列、散列表、二叉树、堆、跳表、图、Trie树
10个算法:递归、排序、二分查找、搜索、哈希算法、贪心算法、分治算法、回溯算法、动态规划、字符串匹配算法 - 学习内容
来历、自身的特点、适合解决的问题、实际的应用场景
四、学习方法
- 边学边练,适度刷题
每周集中复习
学习的目的还是掌握,除非面试需要,必须大量刷题,才能在短期内提升应试正确率 - 多问、多思考、多互动
- 打怪升级学习法
坚持 - 知识需要沉淀,不要想试图一下子掌握所有
五、时间、空间复杂度分析
1、为什么需要复杂度分析?
1)测试结果非常依赖测试环境
2)测试结果受数据规模的影响很大
2、大O复杂度表示法
3、时间复杂度分析
1.只关注循环执行次数最多的一段代码
只需要记录一个最大阶的量级就可以,在分析一个算法、一段代码的时间复杂度的时候,也只关注循环执行次数最多的那一段代码就可以了,上例中,总的时间复杂度就是O(n)
2.加法法则:总复杂度等于量级最大的那段代码的复杂度
3.乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积
公式:T(n) = T1(n) * T2(n) = O(n*n) = O(n2)
4、几种常见时间复杂度实例分析
当数据规模n越来越大时,非多项式量级算法(两个:O(2n)和O(n!))的执行时间会急剧增加,求解问题的执行时间会无限增长
几种常见的多项式时间复杂度
- O(1)
O(1)只是常量级时间复杂度的一种表示方法,并不是指只执行了一行代码
只要代码的执行时间不随n的增大而增长,这样代码的时间复杂度我们都记作O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1) - O(logn)、O(nlogn)
对数阶时间复杂度
- O(m+n)、O(m*n)
代码的复杂度由两个数据的规模,先看代码:
int cal(int m, int n) {
int sum_1 = 0;
int i = 1;
for (; i < m; ++i) {
sum_1 = sum_1 + i;
}
int sum_2 = 0;
int j = 1;
for (; j < n; ++j) {
sum_2 = sum_2 + j;
}
return sum_1 + sum_2;
}
m和n是表示两个数据规模,我们无法事先评估m和n谁的量级大,所以在表示复杂度的时候,不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复杂度就是O(m+n)。
将加法规则改为:T1(m) + T2(n) = O(f(m) + g(n))
5、空间复杂度分析
时间复杂度的全称是渐进时间复杂度,表示算法的执行时间与数据规模之间的增长关系。类比一下,空间复杂度全称就是渐进空间复杂度(asymptotic space complexity),表示算法的存储空间与数据规模之间的增长关系
例子分析:
void print(int n) {
int i = 0;
int[] a = new int[n];
for (i; i <n; ++i) {
a[i] = i * i;
}
for (i = n-1; i >= 0; --i) {
print out a[i]
}
}
第2行代码中,我们申请了一个空间存储变量i,但是它是常量阶的,跟数据规模n没有关系,所以我们可以忽略。第3行申请了一个大小为n的int类型数组,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是O(n)
6、总结
复杂度也叫渐进复杂度,包括时间复杂度和空间复杂度,用来分析算法执行效率与数据规模之间的增长关系,越高阶复杂度的算法,执行效率越低。
常见的复杂度并不多,从低阶到高阶有:O(1)、O(logn)、O(n)、O(nlogn)、O(n2 )
六、最好、最坏、平均、均摊时间复杂度
1、最好、最坏情况时间复杂度
2、平均情况时间复杂度
3、均摊时间复杂度