要成为一名成功的软件工程师,你必须具备扎实的计算机科学基础。本自学指南适用于想要学习编程的大学生们,分为专业方向和非专业方向两个系列。你可以借助这个指南进行自学,但请首先修够你的专业学分,以保证顺利毕业。
本课程表中的课程不能代替大学课程,但它们能够帮助你进一步学习计算机科学,或者对这个领域建立初步理解。
关于如何使用本学习指南的4点建议:
-
请考虑自己的实际情况进行学习。
-
如果你还想学习《指南》之外的其他课程,尽管上吧!
-
本指南仅供参考,即使学完这上面的所有课程,也不能保证你一定能进入谷歌工作。
-
本指南不定期更新。你可以在Google +上关注 Google for Students +Page,随时获取更多资讯。
【为进军学术界作准备的课程】
计算机科学导论课程
你可以选择提供在线编程工具的计算机导论课程。
课程推荐:
Coursera - Computer Science 101
学习至少一种面向对象编程语言,如C++,Java 或Python
入门课程:
Coursera - Learn to Program: The Fundamentals,
MIT Intro to Programming in Java,
Coursera - Introduction to Python,
中级课程:
Udacity's Design of Computer Programs,
Coursera - Learn to Program: Crafting Quality Code,
Coursera - Programming Languages,
Brown University - Introduction to Programming Languages
学习其他的编程语言
To learn list:Java Script, CSS, HTML, Ruby, PHP, C, Perl, Shell. Lisp, Scheme.
相关在线学习资源: w3school.com - HTML Tutorial, CodeAcademy.com
测试和提高自己的编程能力
例如:排查故障,创建测试,破解软件
相关课程:
Udacity - Software Testing Methods,
学习逻辑推理和离散数学
相关课程:
MIT Mathematics for Computer Science,
Coursera - Introduction to Logic,
Coursera - Linear and Discrete Optimization,
Coursera - Probabilistic Graphical Models,
Coursera - Game Theory
深入理解算法和数据结构
学习基本的数据类型,如堆栈、队列和数据包;
了解排序演算法,如快速排序,二路归并排序和堆排序;
了解数据结构,如二叉搜索树,红黑树和哈希表。
相关课程:
MIT Introduction to Algorithms,
Coursera Introduction to Algorithms Part 1 & Part 2,
参考书籍: The Algorithm Design Manual
深入了解操作系统
相关课程: UC Berkeley Computer Science 162
人工智能相关课程
Stanford University - Introduction to Robotics, Natural Language Processing, Machine Learning
如何开发一个编译器
相关课程:Coursera - Compilers
密码学
相关课程:
Udacity - Applied Cryptography
并行编程
相关课程:Coursera - Heterogeneous Parallel Programming
【如果你侧重应用方向】
项目开发相关课程
这方面的内容包括创建和维护一个网站,建立自己的服务器,或开发一个机器人。
相关课程:
如果你想了解一个大型系统的一部分(如代码库),阅读和理解代码,或跟踪文档和排查故障,那么你可以到Github上围观和学习别人的代码,并尝试开发自己的项目。
如果你想通过学习提高与程序员合作的能力,那么你可以先尝试和程序员们共同完成一个项目。
如果你想补充算法知识,练习编程技巧,可以参加CodeJam、ACM举办的国际编程大赛等活动。
如果你通过教学加深自己对计算机的理解,获得软件工程等相关领域的实习经验,那么你可以申请担任相关课程的助教。注意要在实习期开始前提前申请哟!
在美国,学生通常在五月到九月参加实习,一般需要提前几个月进行申请。
相关资源-到谷歌的招聘页面看看吧: google.com/jobs