下面为具体实验步骤 (1)带拟合曲线的散点图矩阵
mydata<-read.csv(file.choose()) #导入数据
summary(mydata)
library(car)
scatterplotMatrix(~GDP+x1+x2+x3,data=mydata,spread=FALSE,smoother.args=list(lty=2),main="GDP和三次产业数据")

图 1 分析:该散点矩阵图为1990-2012年GDP、x1、x2、x3的变化趋势图,其中x1表示第一产业增加值,x2表示第二产业增加值,x3表示第三产业增加值。从该图可以看出来GDP、第一产业和第三产业之间的拟合效果较好,呈现出线性关系;而第二产业增加值与其他变量之间拟合效果一般;从主对角线上核密度曲线与轴须图可以看出除第二产业增加值外其他各变量靠近主对角线,可以知道它们之间存在较强的相关性,而第二产业增加值与其他变量存在相关性,但相比其他变量相关性弱一点。 (2)高密度散点图 cars<read.csv(file.choose(),header=T,sep=",")
names(cars)<-c("电流","电压")
summary(cars)
library(lattice)
with(cars,plot(电流,电压,pch=19,main="车联网车单线电阻阻值"))
with(cars,smoothScatter(电流,电压,main="车联网车单线电阻阻值")) with(cars,{bin<-hexbin(电流,电压,xbins=50)
plot(bin,main="车联网车单线电阻阻值")})
library(IDPmisc)
with(cars,iplot(电流,电压,main="车联网车单线电阻阻值"))
library(hexbin)
with(cars,{
bin<-hexbin(电流,电压,xbins=20)
plot(bin,main="车联网车单线电阻阻值")
})
图 2
图3
|