本文首先介绍下中文分词的基本原理,然后介绍下国内比较流行的中文分词工具,如jieba、SnowNLP、THULAC、NLPIR,上述分词工具都已经在github上开源,后续也会附上github链接,以供参考。
1.中文分词原理介绍
1.1 中文分词概述
中文分词(Chinese Word Segmentation) 指的是将一个汉字序列切分成一个一个单独的词。分词就是将连续的字序列按照一定的规范重新组合成词序列的过程。
1.2 中文分词方法介绍
现有的分词方法可分为三大类:基于字符串匹配的分词方法、基于理解的分词方法和基于统计的分词方法。
1.2.1 基于字符串匹配的分词方法
基于字符串匹配的分词方法又称机械分词方法,它是按照一定的策略将待分析的汉字串与一个“充分大的”机器词典中的词条进行配,若在词典中找到某个字符串,则匹配成功(识别出一个词)。
按照扫描方向的不同,字符串匹配分词方法可以分为正向匹配和逆向匹配;按照不同长度优先匹配的情况,可以分为最大(最长)匹配和最小(最短)匹配;按照是否与词性标注过程相结合,可以分为单纯分词方法和分词与词性标注相结合的一体化方法。常用的字符串匹配方法有如下几种:
(1)正向最大匹配法(从左到右的方向);
(2)逆向最大匹配法(从右到左的方向);
(3)最小切分(每一句中切出的词数最小);
(4)双向最大匹配(进行从左到右、从右到左两次扫描)
这类算法的优点是速度快,时间复杂度可以保持在O(n),实现简单,效果尚可;但对歧义和未登录词处理效果不佳。
1.2.2 基于理解的分词方法
基于理解的分词方法是通过让计算机模拟人对句子的理解,达到识别词的效果。其基本思想就是在分词的同时进行句法、语义分析,利用句法信息和语义信息来处理歧义现象。它通常包括三个部