自然语言处理入门——中文分词原理及分词工具介绍

本文深入探讨中文分词的原理,包括字符串匹配、理解和统计方法,并介绍了jieba、SnowNLP、THULAC和NLPIR等流行分词工具的特点和应用场景。
摘要由CSDN通过智能技术生成

本文首先介绍下中文分词基本原理,然后介绍下国内比较流行的中文分词工具,如jiebaSnowNLPTHULACNLPIR,上述分词工具都已经在github上开源,后续也会附上github链接,以供参考。

1.中文分词原理介绍

1.1 中文分词概述

中文分词(Chinese Word Segmentation) 指的是将一个汉字序列切分成一个一个单独的词分词就是将连续的字序列按照一定的规范重新组合成词序列的过程

1.2 中文分词方法介绍

现有的分词方法可分为三大类:基于字符串匹配的分词方法基于理解的分词方法基于统计的分词方法

1.2.1 基于字符串匹配的分词方法

基于字符串匹配的分词方法又称机械分词方法,它是按照一定的策略待分析的汉字串与一个“充分大的”机器词典中的词条进行配,若在词典中找到某个字符串,则匹配成功(识别出一个词)。

按照扫描方向的不同,字符串匹配分词方法可以分为正向匹配逆向匹配;按照不同长度优先匹配的情况,可以分为最大(最长)匹配最小(最短)匹配;按照是否与词性标注过程相结合,可以分为单纯分词方法分词与词性标注相结合的一体化方法。常用的字符串匹配方法有如下几种:

(1)正向最大匹配法(从左到右的方向);

(2)逆向最大匹配法(从右到左的方向);

(3)最小切分(每一句中切出的词数最小);

(4)双向最大匹配(进行从左到右、从右到左两次扫描)

这类算法的优点是速度快,时间复杂度可以保持在O(n),实现简单,效果尚可;但对歧义未登录词处理效果不佳。

1.2.2 基于理解的分词方法

基于理解的分词方法通过让计算机模拟人对句子的理解,达到识别词的效果。其基本思想就是在分词的同时进行句法、语义分析,利用句法信息语义信息处理歧义现象。它通常包括三个部

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值