最小(大)堆,堆操作

首先介绍一下堆.

堆是一种特殊的完全二叉树,最小堆满足条件是所有父节点的值都比子节点要小,最大堆满足条件是所有父节点的值都比子节点要大.则最小堆根节点的值是最小的,最大堆根节点的值是最大的.由上不难知道,最小(大)堆个数不唯一.

#include "iostream"
using namespace std;
const int maxn=1000;
int h[maxn];
int n;
void siftdown(int i){//最小堆向下调整,i下降前,堆必须要满足是最小堆
    int t=i,flag=0;
    while (i*2<=n && !flag) {
        if (h[i]>h[2*i]) {
            t=2*i;
        }
        else
            t=i;
        if (2*i+1<=n) {
            if (h[t]>h[2*i+1]) {
                    t=2*i+1;
            }
        }
        if (t!=i) {
//            printf("%d %d\n",h[t],h[i]);
            swap(h[t], h[i]);
            i=t;
        }
        else    flag=1;
    }
}
void siftup(int i){//最小堆向上调整
    int flag=0;
    if (i==1) {
        return;
    }
    while (i!=1 && !flag) {
        if (h[i]<h[i/2]) {
            swap(h[i], h[i/2]);
        }
        else    flag=1;
        i=i/2;
    }
}
void creat(){
    for (int i=n/2; i>=1; i--) {
        siftdown(i);
//        for (int j=1; j<=n; j++) {
//            printf("%d ",h[j]);
//        }
//        printf("\n");
    }
}
int deletetop(){//删除堆顶元素
    int t;
    t=h[1];
    h[1]=h[n];
    n--;
    siftdown(1);
    return t;
}
int main(){
    cin>>n;
    for (int i=1; i<=n; i++) {
        cin>>h[i];
    }
    creat();
    for (int i=1; i<=n; i++) {
        printf("%d ",h[i]);
    }
    printf("\n");
    int num=n;
    for (int i=1; i<=num; i++) {
        printf("%d ",deletetop());
    }
}

//参考啊哈算法99 5 36 7 22 17 92 12 2 19 25 28 1 46


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值