最大似然估计简称MLE,今天被老板(老板本科牛津,硕士斯坦福,博士普林斯顿....)问的慌,每次一说MLE自己都没有反应过来.很气
最大似然估计本质就是通过试验结果估计样本的真实情况,基于的假设是:每个变量都基于一个概率分布,即独立同分布.想一想如果有100个球,80个红球,20个白球,每次取一个球不放回的话,符合独立同分布吗?放回的话肯定符合独立同分布.
对于放回实验,实验100次加入取红球次数50,白球次数50,则这个事件发生的概率是P:(1-p)^50*p^50,最大似然估计通过最大化P即最大化已发生之间的概率,来判断真实的p,即默认已发生事件的可能性是最大的.比如我丢一个硬币出来的结果是正面,那么该事件发生概率即为p,p(0<=p<=1)是投硬币为正面的概率,在这里最大似然估计就认为p为1.