转载地址:http://Java.e800.com.cn/articles/2010/1110/1289376854382_1.html
1. 根据概念判断:
如果一个正整数只有两个因子, 1和p,则称p为素数.
public boolean isPrime(int n)
{
if(n < 2) return false;
for(int i = 2; i < n; ++i)
if(n%i == 0) return false;
return true;
}
时间复杂度O(n).
2. 改进, 去掉偶数的判断
public boolean isPrime(int n)
{
if(n < 2) return false;
if(n == 2) return true;
if(n%2==0) return false;
for(int i = 3; i < n; i += 2)
if(n%i == 0) return false;
return true;
}
时间复杂度O(n/2), 速度提高一倍.
3. 进一步减少判断的范围
定理: 如果n不是素数, 则n有满足1< d<=sqrt(n)的一个因子d.
证明: 如果n不是素数, 则由定义n有一个因子d满足1< d< n.
如果d大于sqrt(n), 则n/d是满足1< n/d<=sqrt(n)的一个因子.
public boolean isPrime(int n)
{
if(n < 2) return false;
if(n == 2) return true;
if(n%2==0) return false;
for(int i = 3; i*i <= n; i += 2)
if(n%i == 0) return false;
return true;
}
时间复杂度O(Math.sqrt(n)/2), 速度提高O((n-Math.sqrt(n))/2).
4. 剔除因子中的重复判断.
定理: 如果n不是素数, 则n有满足1< d<=Math.sqrt(n)的一个"素数"因子d.
证明: I1. 如果n不是素数, 则n有满足1< d<=Math.sqrt(n)的一个因子d.
I2. 如果d是素数, 则定理得证, 算法终止.
I3. 令n=d, 并转到步骤I1.
由于不可能无限分解n的因子, 因此上述证明的算法最终会停止.
// primes是递增的素数序列: 2, 3, 5, 7, ...
// 更准确地说primes序列包含1->Math.sqrt(n)范围内的所有素数
public boolean isPrime(int primes[], int n)
{
if(n < 2) return false;
for(int i = 0; primes[i]*primes[i] <= n; ++i)
if(n%primes[i] == 0) return false;
return true;
}
5. 构造素数序列primes: 2, 3, 5, 7, ...
由4的算法我们知道, 在素数序列已经被构造的情况下, 判断n是否为素数效率很高;
下面程序可以输出素数表.
public class ShowPrimeNumber{
public static int[] getPrimeNums(int maxNum){
int[] primeNums = new int[maxNum/2+1];
int sqrtRoot;
int cursor = 0;
boolean isPrime;
for(int i=2;i<=maxNum;i++){
sqrtRoot = (int)Math.sqrt(i); //取平方根
isPrime = true;
for(int j=0;j< cursor;j++){
if(primeNums[j]>sqrtRoot)
break;
if(i%primeNums[j]==0){
isPrime = false;
break;
}
}
if(isPrime){
primeNums[cursor++] = i;
}
}
int[] result = new int[cursor];
System.arraycopy(primeNums,0,result,0,cursor);
return result;
}
public static void main(String[] args) throws Exception{
int maxNum = Integer.parseInt(args[0]);
int[] primeNums = getPrimeNums(maxNum);
System.out.println("共"+primeNums.length+"个素数");
for(int i=0;i< primeNums.length;i++){
System.out.print(primeNums[i]+",\t");
}
}
}
6.(在素数表中)二分查找
Arrays.BinarySearch方法:
该方法用于在指定数组中查找给定的值,采用二分法实现,所以要求传入的数组已经是排序了的。
该方法的基本语法格式为:
Static int binarySearch(byte[] a, byte key)
该方法返回数据中key元素所在的位置,如果没有key元素,则返回key应插入的位置:-(insertion point-1),如数组中的第一个元素就大于key,返回-1。
注:数组的数据类型可以是int[] byte[] short[] float[] long[] double[] char[] Object[]类型。