DCSCN论文阅读笔记

本文介绍了使用深度卷积神经网络(DCSCN)的快速单图像超分辨率方法,结合跳接连接和网络中网络技术。该模型在保持先进重构性能的同时,显著降低了计算成本,适用于资源有限的设备。通过深度CNN和跳接连接提取图像的局部和全局特征,以实现高效计算和高质量的图像重建。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:Fast and Accurate Image Super Resolution by Deep CNN with Skip Connection and Network in Network

在这里插入图片描述

摘要

  • 我们提出了一种具有深度卷积神经网络的高效,快速的单图像超分辨率(SISR)模型。最近,Deep CNN表明它们在单图像超分辨率方面具有显着的重构性能。【虽然很深的网络性能好,但是需要的硬件要求很高】当前的趋势是使用更深的CNN层来提高性能,但是,深度模型需要较大的计算资源,不适合移动,平板电脑和IoT设备等网络边缘设备,我们的模型具有最先进的重建性能,且计算成本至少降低了10倍通过深CNN和剩余网络,跳过连接和网络中的网络(DCSCN)。深度CNN和跳过连接层的组合用作特征提取器,用于局部和全局区域的图像特征。并行的1x1 CNN类似于网络中的“网络”,也用于图像重建。该结构减少了前一层输出的尺寸,从而可以更快地进行计算,而信息损失更少,并且可以直接处理原始图像。此外,我们还优化了每个CNN的层数和过滤器,从而显着降低了计算成本。因此,所提出的算法不仅实现了最先进的性能,而且还实现了
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值