题目:Supervised Pixel-Wise GAN for FaceSuper-Resolution
中文:受监督的Pixel-Wise GAN 对于人脸超分辨
摘要
- 对于许多与面部有关的多媒体应用,低分辨率的面部图像可能会大大降低面部识别性能,并需要面部超分辨率(SR)。在当前的SR方法中,
面向MSE的SR方法通常会产生过度平滑的输出,并且可能会丢失一些纹理细节
,而面向GAN的SR方法可能会生成对面部识别有害的伪影。
为了解决上述问题,本文提出了一种有监督的逐像素生成对抗网络(SPGAN),该网络可以将分辨率很低的16X16或更小像素大小的人脸图像解析为更大的多个缩放因子版本(2X,4X,8X甚至是16倍)
。与传统的非监督式鉴别器不同,后者生成一个数字来表示输入图像是真实的还是伪造的,拟议的监督式像素鉴别器主要关注生成的SR人脸图像的每个像素是否像其真实感一样真实
。真实的HR(高分辨率)人脸图像中的相应像素。为了进一步提高SPGAN的人脸识别性能,我们先通过将两个输入发送到鉴别器来利用人脸身份,其中包括输入人脸图像(真实的HR人脸图像或其对应的SR人脸图像)及其人脸特征&#