SPGAN论文阅读笔记

本文提出了受监督的Pixel-Wise GAN(SPGAN)用于人脸超分辨,解决了过度平滑和纹理丢失的问题。SPGAN结合了人脸识别模块,提高了SR图像的真实感和面部识别准确性。实验表明,与现有方法相比,SPGAN实现了更逼真的图像和更高的识别精度。
摘要由CSDN通过智能技术生成

题目:Supervised Pixel-Wise GAN for FaceSuper-Resolution

中文:受监督的Pixel-Wise GAN 对于人脸超分辨

在这里插入图片描述

摘要

  • 对于许多与面部有关的多媒体应用,低分辨率的面部图像可能会大大降低面部识别性能,并需要面部超分辨率(SR)。在当前的SR方法中,面向MSE的SR方法通常会产生过度平滑的输出,并且可能会丢失一些纹理细节,而面向GAN的SR方法可能会生成对面部识别有害的伪影。为了解决上述问题,本文提出了一种有监督的逐像素生成对抗网络(SPGAN),该网络可以将分辨率很低的16X16或更小像素大小的人脸图像解析为更大的多个缩放因子版本(2X,4X,8X甚至是16倍)。与传统的非监督式鉴别器不同,后者生成一个数字来表示输入图像是真实的还是伪造的,拟议的监督式像素鉴别器主要关注生成的SR人脸图像的每个像素是否像其真实感一样真实。真实的HR(高分辨率)人脸图像中的相应像素。为了进一步提高SPGAN的人脸识别性能,我们先通过将两个输入发送到鉴别器来利用人脸身份,其中包括输入人脸图像(真实的HR人脸图像或其对应的SR人脸图像)及其人脸特征&#
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值