
项目
图灵追慕者
IT公司从事人工智能研究的高级技术经理。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
泊位与岸桥联合调度问题
集装箱码头,混合型泊位:泊位是离散的,有编号,要做的也就3个泊位,编号1,2,3。1号泊位即下图左边凹进陆侧的是缩进式泊位,船的两边都可以配置装卸用的岸桥,理论上效率是右边顺岸式泊位2、3号的2倍。岸桥:12台[初始时(3+3缩进式)+6]两个顺岸式的6岸桥可以移动,比如2号泊位4个岸桥,3号泊位2个岸桥;1号缩进式泊位效率较高,所以船舶都倾向靠泊1号缩进式泊位,但也不能使到1号泊位的船过于密集,不然的话,所有的船都慢慢地开等着用1号泊位了,要均衡资源。缩进式泊位因两侧均可布置岸桥,岸桥数是顺岸式泊位的。原创 2024-03-05 14:43:19 · 2134 阅读 · 2 评论 -
机器视觉识别及图像操作软体开发
计算机视觉软体开发原创 2023-04-18 14:10:28 · 687 阅读 · 0 评论 -
基于python的批量图片名称自定义修改
批量修改图片名称并自定义图片名称保存。原创 2022-10-18 17:33:14 · 663 阅读 · 0 评论 -
python循环读取图片名写入到txt文档中标注
根据图片名称对图片进行分类打标签写入文档。原创 2022-07-12 18:43:28 · 1039 阅读 · 0 评论 -
基于MATLAB的BP神经网络算法的人脸朝向识别-01
项目相关说明:Images文件夹为数据集:共50张图片,10张人脸,每张人脸5个表情train:利用8张人脸训练BP神经网络,BP网络利用matlab自带的工具箱test:利用2张人脸十张图片测试,精确度百分之百特征提取:利用边缘检测提取眼睛部位特征编译器环境:matlab R2014aBP神经网路训练代码:%BPtrain代码%BP神经网络训练clc;images=[ ];M_train=8;%表示人脸N_train=5;%表示方向sample=[];pixe..原创 2021-04-24 16:36:29 · 1331 阅读 · 0 评论 -
5.基于CNN的微博情感分类
项目介绍:基于python和CNN算法实现微博情感分类,分4类。大致思路是利用CNN对已有的的词汇数据进行训练,然后利用模型在测试集上验证效果。项目输出效果:https://www.bilibili.com/video/BV1x64y1D7tt/环境配置:windows10企业版(x64)+python3.6.8(x64)nltk == 3.4.5pandas == 0.25.3numpy == 1.16.4scikit-learn = 0.20.4keras == 2.2.2.原创 2021-03-18 14:18:58 · 1713 阅读 · 2 评论 -
4.多姿态估计与人体行为识别系统
1.项目功能介绍2.项目环境3.项目实现原创 2021-01-31 08:51:24 · 660 阅读 · 0 评论 -
基于PyQt5的商标条形码识别
问题简单解答:项目交付后,该同学问了几个问题,我简单的回答了一下。1. logo识别过程中特征点、特征点定位、特征描述?(SIFT特征,通过数据库中的图片SIFT特征点和测试图片的特征点匹配比较,多于设定的阈值(30)个表示相似,是同一商标,少于,则证明不是同一商标。)2.软件调试过程(主要是为了迎合毕设的软件调试部分,模拟初期调试的过程)没搞懂你这个问题想问啥?是让教你如何分别测试图片条码、视频条码、图片商标和视频商标吗? 在主函数中调节相应的标志位就可以3.其他替代方案(粗略思路,.原创 2020-12-23 21:03:43 · 342 阅读 · 1 评论 -
2.基于yolov的行人进出双向计数
项目介绍:基于python和yolov算法实现视频中行人计数。大致思路是yolov行人检测,行人跟踪,行人统计。项目输出效果:https://www.bilibili.com/video/BV1Ta4y1p7fP/项目环境:1.操作系统:windows10 X64 企业版2.python环境:3.6.8 64位纯净版3.相关第三方库:imutils --- 0.5.2 (0.5.3) opencv --- 4.1.0.25(3.4.1.15) numb...原创 2020-12-22 12:47:48 · 2171 阅读 · 6 评论 -
3.基于深度学习的CNN文本小说分类
项目说明:原创 2020-07-26 13:17:58 · 1409 阅读 · 3 评论 -
1.基于keras-cnn的人脸表情识别
项目功能说明:利用训练好的模型对摄像头画面人脸实时表情进行识别,主要能识别7中情感; 0:'angry', 1: 'disgust', 2: 'fear', 3: 'happy', 4: 'sad', 5: 'surprise', 6: 'neutral'。识别原理:1.人脸检测 2.人脸表情分类核心代码:from statistics import modeimport cv2from keras.models import lo...原创 2020-07-12 09:52:58 · 2809 阅读 · 5 评论