一、简介
-
MS-COCO 数据集是微软构建的一个数据集,其包含
detection, segmentation, keypoints
等任务 -
MS-COCO
总共包含 91 个类别(检测任务使用 80 类),每个类别的图片数量如下:
-
与
PASCAL VOC
数据集相比:COCO
中的图片包含了自然图片以及生活中常见的目标图片,背景比较复杂,目标数量比较多,目标尺寸更小,因此COCO
数据集上的任务更难COCO
数据集平均每张图片包含3.5
个类别和7.7
个实例目标,仅有不到20%
的图片只包含一个类别,仅有10%
的图片包含一个实例目标;而PASCAL VOC
数据集平均每张图片仅包含1.4
个类别和2.3
个实例目标,有多于70%
的图片上都只有一个类别
二、MS-COCO 数据下载及组织结构
- MS-COCO-2017 train_val_test 百度云下载链接,提取码: 6N62
- train2017: 带标签,117266 张,这里使用 YOLOv5 作者提供的 label (
xc/width, yc/height, w/width, h/height
) - val2017: 带标签,4952 张,这里使用 YOLOv5 作者提供的 label(
xc/width, yc/height, w/width, h/height
) - test2017: 无标签,40670 张
- Note: 这里使用 YOLOv5 作者提供的 label,训练和验证集比原数据少了一些(
1021/48
)
- train2017: 带标签,117266 张,这里使用 YOLOv5 作者提供的 label (
- 数据集组织结构如下,其中
train2017.txt
和val2017.txt
存储在训练和验证图片的路径
- JSON 解析可参考 YOLOv5 作者提供的脚本:Convert JSON annotations into YOLO format 或者直接使用作者转换好的 label 链接:https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017labels.zip
三、评估标准
- COCO 中的 AP 是指在
10
个 IOU 层面(0.5 到 0.95 每变化 0.05 就测试一次 AP)及80
个类别层面的平均值 - COCO 还针对 三种不同大小(
small,medium,large
) 的图片提出了测量标准,COCO 中包含大约41%
的小目标 ( a r e a < 32 × 32 area < 32×32 area<32×32),34%
的中等目标 ( 32 × 32 < a r e a < 96 × 96 32×32 < area < 96×96 32×32<area<96×96),和24%
的大目标 ( a r e a > 96 × 96 area > 96×96 area>96×96)
四、参考资料
1、MS-COCO 官网
2、MS-COCO 数据集使用和模型评估的代码
3、目标检测数据集 MS-COCO 简介
4、MS-COCO 数据集格式简介