状态压缩动态规划入门篇

状态压缩动态规划

    动态规划的状态有时候比较难,不容易表示出来,需要用一些编码技术,把状态压缩的用简单的方式表示出来。典型方式:当需要表示一个集合有哪些元素时,往往利用2进制用一个整数表示。

    *:一般有个数据 n<16 或者 n<32 这个很可能就是状态DP的标志,因为我们要用一个int的二进制来表示这些状态。要注意好这些数据规模的提示作用。

    *:确定了为状态DP,那么第一步就是预处理,求出每行所有可能的状态了,cnt记录总的状态数,stk[]记录所有的可能状态。以炮兵阵地为例:

    *:然后就是DP部分了,明确好状态转移方程。先特殊处理第1行,然后按状态转移方程求出剩下的值。

       int cnt, stk[MAX];
       void findStk(int n){     //  求出所有可能的状态。

           for(int i = 0; i < (1<<n); i ++)
              if(ok(i)){                       //  判断这种状态可不可行。
                  stk[cnt] = i;
                  sum[cnt ++] = getSum(i);     //  计算这种状态包含了几个炮兵。
              }
       }

       bool ok(int x){          //  判断状态x是否符合,即是否会出现两个大炮间隔小于2。
           if(x & (x<<1)) return false;
           if(x & (x<<2)) return false;
           return true;
       }

       int getSum(int x){       //  求出状态x中安装了多少门大炮,x的二进制有几个1。
           int num = 0;
           while(x > 0){
               if(x & 1) num ++;
               x >>= 1;
           }
           return num;
        }

经典问题:TSP

    一个n个点的带权的有向图,求一条路径,使得这条路经过每个点恰好一次,并且路径上边的权值和最小(或者最大)。或者求一条具有这样性质  的回路,这是经典的TSP问题。
    n <= 16 (重要条件,状态压缩的标志)

    如何表示一个点集:

   由于只有16个点,所以我们用一个整数表示一个点集:
   例如:
    5 = 0000000000000101;(2进制表示)
    它的第0位和第2位是1,就表示这个点集里有2个点,分别是点0和点2。
    31 = 0000000000011111; (2进制表示)
    表示这个点集里有5个点,分别是0,1,2,4,5;
   所以一个整数i就表示了一个点集;整数i可以表示一个点集,也可以表示是第i个点。


    状态表示:

    dp[i][j]表示经过点集i中的点恰好一次,不经过其它的点,并且以j点为终点的路径,权值和的最小值,如果这个状态不存在,就是无穷大。
    状态转移:
    单点集:状态存在dp[i][j] = 0;否则无穷大。非单点集:
    1:状态存在  dp[i][j] = min(dp[k][s] + w[s][j])
    k表示i集合中去掉了j点的集合,s遍历集合k中的点并且dp[k][s]状态存在,点s到点j有边存在,w[s][j]表示边的权值。
    2.:状态不存在 dp[i][j]为无穷大。

    最后的结果是: min( dp[( 1<<n ) – 1][j] ) ( 0 <= j < n );

    技巧:利用2进制,使得一个整数表示一个点集,这样集合的操作可以用位运算来实现。例如从集合i中去掉点j:
    k = i & (~( 1<<j)) 或者 k = i - (1<<j)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值