请求管道模型 动态页面原理

深入探讨ASP.NET请求管道的运作机制,包括关键事件、生命周期管理与具体实现过程,帮助开发者理解请求处理流程。


请求管道模型 

如果是请求的是一个aspx请求 iis 就把请求交给aspnet_isapi.dll(非托管的程序)的 扩展程序进行处理 扩展处理再把请求 通过ecb(这是一个windows操作系统的句柄,拿到这个句柄之后就可以访问到这个句柄所代表的某些资源 托管环境通过句柄就可以访问到这个请求的原始的报文信息了)的句柄交给 托管的 ISApiRuntime  句柄ecb通过ISPAiRuntime创建了httpWorkRequest对象(httpWorkRequest 对象就是一个简单的 报文的封装)然后再把 httpWorkRequest对象交给HttpRuntime的ProcessRequest方法
通过ProcessRequest方法把httpWorkRequest对象封装成一个HttpContext 上下文 也就是把请求报文封装成了一个HttpRequest对象和httpResponse对象 在通过HttpApplicationFactory 创建一个HttpApplication的具体的实例 请求就随着 HttpApplication的管道一次一次的流 在这个管道中有19个公开的事件 一共有23个事件 请求流到HttpAppLication的ProcessRequest方法的时候 它内部帮我们一次性的把这19个事件都调用了 而这19个事件允许我们开发人员注册。在Asp.net HttpApplication管道里面通过事件的方式实现了这种过滤的管道 (在第八个事件里面创建最终处理当前请求的handler实例 在第11 12事件的 区间执行调用第八个事件创建出来的handler的processRequest的方法)(在第八个事件只是根据地址请求的文件 创建出来的实例)

 

要学习页面的生命周期就要知道请求管道中程序员可以调用的那19个事件

下面是请求管道中的19个事件
1.BeginRequest:开始处理请求
2.AuthenticateRequest 授权验证请求,获取用户授权信息
3.:PostAuthenticateRequest 获取成功
4.:AunthorizeRequest 授权 一般检查用户名是否获得了权限
5.:PostAuthorizeRequest 获得授权
6.:ResolveRequestcache:获取页面缓存结果
7.:PostResolveRequestHandler 以获取缓存 当前请求映射到mvchandler(pr) 创建控制器工厂 ,创建控制器,调用action执行,view→response
//action   Handler : PR()
8.:PostMapRequestHandler 创建页面对象:创建 最终处理当前http请求的 Handler  实例:  第一从HttpContext中获取当前的PR Handler   ,Create
9.:PostAcquireRequestState 获取Session
10.PostAcquireRequestState 获得Session
11.PreRequestHandlerExecute:准备执行页面对象 执行页面对象的ProcessRequest方法
12.PostRequestHandlerExecute 执行完页面对象了
13.ReleaseRequestState 释放请求状态
14.PostReleaseRequestState 已释放请求状态
15.UpdateRequestCache 更新缓存
16.PostUpdateRequestCache 已更新缓存
17.LogRequest 日志记录
18.PostLogRequest 已完成日志
19.EndRequest 完成、



基于TROPOMI高光谱遥感仪器获取的大气成分观测资料,本研究聚焦于大气污染物一氧化氮(NO₂)的空间分布与浓度定量反演问题。NO₂作为影响空气质量的关键指标,其精确监测对环境保护与大气科学研究具有显著价值。当前,利用卫星遥感数据结合先进算法实现NO₂浓度的高精度反演已成为该领域的重要研究方向。 本研究构建了一套以深度学习为核心的技术框架,整合了来自TROPOMI仪器的光谱辐射信息、观测几何参数以及辅助气象数据,形成多维度特征数据集。该数据集充分融合了不同来源的观测信息,为深入解析大气中NO₂的时空变化规律提供了数据基础,有助于提升反演模型的准确性与环境预测的可靠性。 在模型架构方面,项目设计了一种多分支神经网络,用于分别处理光谱特征与气象特征等多模态数据。各分支通过独立学习提取代表性特征,并在深层网络中进行特征融合,从而综合利用不同数据的互补信息,显著提高了NO₂浓度反演的整体精度。这种多源信息融合策略有效增强了模型对复杂大气环境的表征能力。 研究过程涵盖了系统的数据处理流程。前期预处理包括辐射定标、噪声抑制及数据标准化等步骤,以保障输入特征的质量与一致性;后期处理则涉及模型输出的物理量转换与结果验证,确保反演结果符合实际大气浓度范围,提升数据的实用价值。 此外,本研究进一步对不同功能区域(如城市建成区、工业带、郊区及自然背景区)的NO₂浓度分布进行了对比分析,揭示了人类活动与污染物空间格局的关联性。相关结论可为区域环境规划、污染管控政策的制定提供科学依据,助力大气环境治理与公共健康保护。 综上所述,本研究通过融合TROPOMI高光谱数据与多模态特征深度学习技术,发展了一套高效、准确的大气NO₂浓度遥感反演方法,不仅提升了卫星大气监测的技术水平,也为环境管理与决策支持提供了重要的技术工具。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值