Bellman-Ford算法流程分为三个阶段:
(1)初始化:将除源点外的所有顶点的最短距离估计值d[v]←+∞, d[s] ←0;
(2)迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)
(3)检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在d[v]中。
算法描述如下:
Bellman-Ford(G,w,s):boolean//图G,边集函数w,s为源点
1foreachvertexv∈ V(G) do//初始化1阶段
2d[v]←+∞
3d[s] ←0;//1阶段结束
4fori=1to|v|-1do//2阶段开始,双重循环。
5foreach edge(u,v) ∈E(G) do //边集数组要用到,穷举每条边。
6If d[v]>d[u]+w(u,v)then//松弛判断
7d[v]=d[u]+w(u,v)//松弛操作2阶段结束
8foreach edge(u,v) ∈E(G) do
9If d[v]>d[u]+w(u,v)then
10Exitfalse
11Exit true
算法模板(C++)
const int INF = 999999;
const int MAXN = 10005;
typedef struct Node
{
int v;//起点
int u;//终点
int w;
}Node;
Node edge[MAXN];
int dist[MAXN]; //此处要特别注意,bellman-ford算法中不要使用0x7fffffff,为此wa了n次
int edgenum, n;
bool BellmanFord(int s)
{
int i, j;
bool flag = false;
for(i = 1; i <= n; ++i)
{
dist[i] = INF; //其余点的距离设置为无穷
}
dist[s] = 0; //源点的距离设置为0
for(i = 1;i < n; ++i)
{
flag = false; //优化:如果某次迭代中没有任何一个d值改变,尽可以立刻退出迭代而不需要把所有的n-1次迭代都做完
for(j = 0; j < edgenum; ++j)
{
if(dist[edge[j].u] > dist[edge[j].v] + edge[j].w)
{
flag = true;
dist[edge[j].u] = dist[edge[j].v] + edge[j].w;
}
}
if(!flag)
{
break;
}
}
for(i = 0; i < edgenum; ++i)
{
if(dist[edge[i].v] < INF && dist[edge[i].u] > dist[edge[i].v] + edge[i].w)
{
return false;
}
}
return true;
}