优化案例 | 分区表场景下的SQL优化

导读

有个表做了分区,每天一个分区。

该表上有个查询,经常只查询表中某一天数据,但每次都几乎要扫描整个分区的所有数据,有什么办法进行优化吗?

待优化场景

有一个大表,每天产生的数据量约100万,所以就采用表分区方案,每天一个分区。

下面是该表的DDL:

CREATE TABLE `t1` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `date` date NOT NULL,
  `kid` int(11) DEFAULT '0',
  `uid` int(11) NOT NULL,
  `iid` int(11) DEFAULT '0',
  `icnt` int(8) DEFAULT '0',
  `tst` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
  `countp` smallint(11) DEFAULT '1',
  `isr` int(2) NOT NULL DEFAULT '0',
  `clv` int(5) NOT NULL DEFAULT '1',
  PRIMARY KEY (`id`,`date`),
  UNIQUE KEY `date` (`date`,`uid`,`iid`),
  KEY `date_2` (`date`,`kid`)
) ENGINE=InnoDB AUTO_INCREMENT=3180686682 DEFAULT CHARSET=utf8mb4
/*!50500 PARTITION BY RANGE  COLUMNS(`date`)
(PARTITION p20161201 VALUES LESS THAN ('2016-12-02') ENGINE = InnoDB,
 PARTITION p20161202 VALUES LESS THAN ('2016-12-03') ENGINE = InnoDB,
 PARTITION p20161203 VALUES LESS THAN ('2016-12-04') ENGINE = InnoDB,
...

该表上经常发生下面的慢查询:

SELECT ... FROM `t1` WHERE `date` = '2017-04-01' AND `icnt` > 300 AND `id` = '801301';

SQL优化之路

SQL优化思路

想要优化一个SQL,一般来说就是先看执行计划,观察是否尽可能用到索引,同时要关注预计扫描的行数,以及是否产生了临时表(Using temporary) 或者 是否需要进行排序(Using filesort),想办法消除这些情况。

更进一步的优化策略则可能需要调整程序代码逻辑,甚至技术架构或者业务需求,这个动作比较大,一般非核心系统上的核心问题,不会这么大动干戈,绝大多数情况,还是需要靠DBA尽可能发挥聪明才智来解决。

SQL性能瓶颈定位

现在,我们来看下这个SQL的执行计划:

yejr@imysql.com[myDB]> EXPLAIN PARTITIONS SELECT ... FROM `t1` WHERE 
  `date` = '2017-03-02' AND `icnt` > 100 AND `iid` = '502302'\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: t1
   partitions: p20161201,p20161202...p20170308,p20170309...
         type: ref
possible_keys: date,date_2
          key: date
      key_len: 3
          ref: const
         rows: 9384602
        Extra: Using where

这个执行计划看起来还好,有索引可用,也没临时表,也没filesort。不过,我们也注意到,预计要扫描的行数还是挺多的 rows: 9384602,而且要扫描全部表分区,难怪效率不高,总是SLOW QUERY。

优化思考

我们注意到这个SQL总是要查询某一天的数据,这个表已经做了按天分区,那是不是可以忽略 WHERE 子句中的 时间条件呢?

还有,既然去掉了 date 条件,反观表DDL,剩下的条件貌似就没有合适的索引了吧?

所以,我们尝试新建一个索引:

yejr@imysql.com[myDB]> ALTER TABLE t1 ADD INDEX iid (iid, icnt);

然后,把SQL改造成下面这样,再看下执行计划:

yejr@imysql.com[myDB]> EXPLAIN PARTITIONS SELECT ... FROM `t1` partition(p2017030) WHERE 
  `icnt` > 100 AND `iid` = '502302'\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: t1
   partitions: p20170302
         type: ref
possible_keys: date,date_2,iid
          key: iid
      key_len: 10
          ref: const
         rows: 7800
        Extra: Using where

这优化效果,杠杠滴。

事实上,如果不强制指定分区的话,也是可以达到优化效果的:

yejr@imysql.com[myDB]> EXPLAIN PARTITIONS SELECT ... FROM `t1` WHERE 
  `date` = '2017-03-02' AND `icnt` > 100 AND `iid` = '502302'\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: t1
   partitions: p20170302
         type: ref
possible_keys: date,date_2,iid
          key: iid
      key_len: 10
          ref: NULL
         rows: 7800
        Extra: Using where

后记

绝大多数的SQL通过添加索引、适当调整SQL代码(例如调整驱动表顺序)等简单手法来完成。

多说几句,遇到SQL优化性能瓶颈问题想要在技术群里请教时,麻烦先提供几个必要的信息:

  • 表DDL

  • 表常规统计信息,可执行 SHOW TABLE STATUS LIKE 't1' 查看

  • 表索引分布信息,可执行 SHOW INDEX FROM t1 查看

  • 有问题的SQL及相应的执行计划 没有这些信息的话,就别去麻烦别人了吧。

最后安利下,知数堂培训马上推出 SQL开发优化 课程,由业界资深SQL优化专家郑老师授课。

该课程关键字:MySQL、Oracle、SQL调优、EXPLAIN、DBMS_XPLAN、OPTIMIZER TRACE、SQL改写、NESTED LOOP、OUTER JOIN、HASH JOIN、ERD图、HINT、SORT MERGE、Materialized View、ROWNUM。

学完本课程,无论您是DBA工程师、运维工程师,还是开发工程师,抑或系统架构师、技术主管,都将大幅增强您的职场实力,加薪50%轻轻松松。此外,我们也会将优秀的学员直接推向各大一线互联网公司。

有兴趣的同学可以扫码加入知数堂QQ群 579036588 关注课程进展。

不再加原创

喜欢就转发

打赏可勾搭


靠谱好茶&在线培训,都在〖老叶茶馆〗http://yejinrong.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值