简介
Categraf 是一个监控采集 Agent,类似 Telegraf、Grafana-Agent、Datadog-Agent,希望对所有常见监控对象提供监控数据采集能力,采用 All-in-one 的设计,不但支持指标采集,也希望支持日志和调用链路的数据采集。来自快猫研发团队,和 Open-Falcon、Nightingale 的研发是一拨人。
categraf的代码托管在两个地方:
-
github:https://github.com/flashcatcloud/categraf -
gitlink:https://www.gitlink.org.cn/flashcat/categraf
对比
categraf 和 telegraf、exporters、grafana-agent、datadog-agent 等的关系是什么?
telegraf 是 influxdb 生态的产品,因为 influxdb 是支持字符串数据的,所以 telegraf 采集的很多 field 是字符串类型,另外 influxdb 的设计,允许 labels 是非稳态结构,比如 result_code 标签,有时其 value 是 0,有时其 value 是 1,在 influxdb 中都可以接受。但是上面两点,在类似 prometheus 的时序库中,处理起来就很麻烦。
prometheus 生态有各种 exporters,但是设计逻辑都是一个监控类型一个 exporter,甚至一个实例一个 exporter,生产环境可能会部署特别多的 exporters,管理起来略麻烦。
grafana-agent import 了大量 exporters 的代码,没有裁剪,没有优化,没有最佳实践在产品上的落地,有些中间件,仍然是一个 grafana-agent 一个目标实例,管理起来也很不方便。
datadog-agent确实是集大成者,但是大量代码是 python 的,整个发布包也比较大,有不少历史包袱,而且生态上是自成一派,和社区相对割裂。
categraf 确实又是一个轮子,categraf 希望:
-
支持 remote_write 写入协议,支持将数据写入 promethues、M3DB、VictoriaMetrics、InfluxDB -
指标数据只采集数值,不采集字符串,标签维持稳态结构 -
采用 all-in-one 的设计,所有的采集工作用一个 agent 搞定,未来也可以把日志和 trace 的采集纳入 agent -
纯 Go 代码编写,静态编译依赖少,容易分发,易于安装 -
尽可能落地最佳实践,不需要采集的数据无需采集,针对可能会对时序库造成高基数的问题在采集侧做出处理 -
常用的采集器,不但提供采集能力,还要整理出监控大盘和告警规则,用户可以直接导入使用 -
未来希望作为快猫 SaaS 产品的重要组成部分,引入快猫团队的研发力量持续迭代,当然,希望更多的公司、更多人研发人员参与共建,做成国内最开放、最好用的采集器
安装
可以直接去 categraf releases 页面,下载编译好的二进制,也可自行编译,编译只需要一条命令:go build
当然,前提是机器上有 Go 环境。
如果是从老版本升级,也是建议大家查看 categraf releases 页面,每个版本改动了什么,升级时注意什么,都会在这里写清楚。
在目标机器部署,只需要 categraf 二进制、以及 conf 目录,conf 下有一个主配置文件:config.toml,定义机器名、全局采集频率、全局附加标签、remote write backend地址等;另外就是各种采集插件的配置目录,以input.打头,如果某个采集器 xx 不想启用,把 input.xx 改个其他前缀,比如 bak.input.xx,categraf 就会忽略这个采集器。
conf 目录下还提供了 categraf.service 文件样例,便于大家使用 systemd 托管 categraf。如果对 systemd 不熟悉,建议学习一下课程:Linux进阶知识
测试
我们经常会需要测试某个采集器的行为,临时看一下这个采集器输出哪些监控指标,比如配置好了 conf/input.mysql/mysql.toml
想要看看采集了哪些 mysql 指标,可以执行命令:./categraf --test --inputs mysql
这个命令会去连接你配置的 mysql 实例,执行SQL收集输出,将输出的内容做格式转换,最终打印到 stdout,如果我们在 stdout 正常看到了 mysql 相关监控指标,则说明一切正常,否则就是哪里出了问题,大概率是 conf/input.mysql/mysql.toml
配置的有问题。
如果修改了某个采集器的配置,需要重启 categraf 或者给 categraf 进程发送HUP信号,发送HUP信号的命令,举例:
kill -HUP `pidof categraf`
另外,categraf 支持哪些命令行参数,可以通过 ./categraf --help
查看
插件说明
采集插件的代码,在代码的 inputs 目录,每个插件一个独立的目录,目录下是采集代码,以及相关的监控大盘JSON(如有)和告警规则JSON(如有),Linux相关的大盘和告警规则没有散在 cpu、mem、disk等采集器目录,而是一并放到了 system 目录下,方便使用。
插件的配置文件,放在conf目录,以input.打头,每个配置文件都有详尽的注释,如果整不明白,就直接去看 inputs 目录下的对应采集器的代码,Go 的代码非常易读,比如某个配置不知道是做什么的,去采集器代码里搜索相关配置项,很容易就可以找到答案。
配置说明
这里对 config.toml 的每项配置做出解释:
[global]
# 启动的时候是否在stdout中打印配置内容
print_configs = false
# 机器名,作为本机的唯一标识,会为时序数据自动附加一个 agent_hostname=$hostname 的标签
# hostname 配置如果为空,自动取本机的机器名
# hostname 配置如果不为空,就使用用户配置的内容作为hostname
# 用户配置的hostname字符串中,可以包含变量,目前支持两个变量,
# $hostname 和 $ip,如果字符串中出现这两个变量,就会自动替换
# $hostname 自动替换为本机机器名,$ip 自动替换为本机IP
# 建议大家使用 --test 做一下测试,看看输出的内容是否符合预期
hostname = ""
# 是否忽略主机名的标签,如果设置为true,时序数据中就不会自动附加agent_hostname=$hostname 的标签
omit_hostname = false
# 时序数据的时间戳使用ms还是s,默认是ms,是因为remote write协议使用ms作为时间戳的单位
precision = "ms"
# 全局采集频率,15秒采集一次
interval = 15
# 全局附加标签,一行一个,这些写的标签会自动附到时序数据上
# [global.labels]
# region = "shanghai"
# env = "localhost"
# 发给后端的时序数据,会先被扔到 categraf 内存队列里,每个采集插件一个队列
# chan_size 定义了队列最大长度
# batch 是每次从队列中取多少条,发送给后端backend
[writer_opt]
# default: 2000
batch = 2000
# channel(as queue) size
chan_size = 10000
# 后端backend配置,在toml中 [[]] 表示数组,所以可以配置多个writer
# 每个writer可以有不同的url,不同的basic auth信息
[[writers]]
url = "http://127.0.0.1:19000/prometheus/v1/write"
# Basic auth username
basic_auth_user = ""
# Basic auth password
basic_auth_pass = ""
# timeout settings, unit: ms
timeout = 5000
dial_timeout = 2500
max_idle_conns_per_host = 100
对于每个采集器的配置,不在这里一一赘述,只讲一些相对通用的配置项。
interval
每个插件的配置中,一开始通常都是 interval 配置,表示采集频率,如果这个配置注释掉了,就会复用 config.toml 中的采集频率,这个配置如果配置成数字,单位就是秒,如果配置成字符串,就要给出单位,比如:
interval = 60
interval = "60s"
interval = "1m"
上面三种写法,都表示采集频率是1分钟,如果是使用字符串,可以使用的单位有:
-
秒:s -
分钟:m -
小时:h
instances
很多采集插件的配置中,都有 instances 配置段,用 [[]]
包住,说明是数组,即,可以出现多个 [[instances]] 配置段,比如 ping 监控的采集插件,想对4个IP做PING探测,可以按照下面的方式来配置:
[[instances]]
targets = [
"www.baidu.com",
"127.0.0.1",
"10.4.5.6",
"10.4.5.7"
]
也可以下面这样子配置:
[[instances]]
targets = [
"www.baidu.com",
"127.0.0.1"
]
[[instances]]
targets = [
"10.4.5.6",
"10.4.5.7"
]
interval_times
instances 下面如果有 interval_times 配置,表示 interval 的倍数,比如ping监控,有些地址采集频率是15秒,有些可能想采集的别太频繁,比如30秒,那就可以把interval配置成15,把不需要频繁采集的那些instances的interval_times配置成2
或者:把interval配置成5,需要15秒采集一次的那些instances的interval_times配置成3,需要30秒采集一次的那些instances的interval_times配置成6
labels
instances 下面的 labels 和 config.toml 中的 global.labels 的作用类似,只是生效范围不同,都是为时序数据附加标签,instances 下面的 labels 是附到对应的实例上,global.labels 是附到所有时序数据上
工作计划
categraf 已经完成了一些常用的采集插件,还有很多需要继续开发,欢迎大家共建补充,已经完成的采集插件包括:
-
[x] system -
[x] kernel -
[x] kernel_vmstat -
[x] linux_sysctl_fs -
[x] cpu -
[x] mem -
[x] net -
[x] netstat -
[x] disk -
[x] diskio -
[x] ntp -
[x] processes -
[x] exec -
[x] ping -
[x] http_response -
[x] net_response -
[x] procstat -
[x] mysql -
[x] redis -
[x] oracle -
[x] rabbitmq -
[x] prometheus -
[x] tomcat -
[x] nvidia_smi
部分采集器不但提供了采集能力,还提供了监控大盘的配置和告警规则的配置,将JSON导入夜莺就可以使用,至于有哪些插件提供了JSON配置,可以通过下面的方式找到:
[root@master01 categraf]# find inputs -name "*.json"
inputs/redis/alerts.json
inputs/redis/dashboard.json
inputs/system/dashboard.json
inputs/system/alerts-linux.json
inputs/oracle/dashboard.json
inputs/ping/alerts.json
inputs/ping/dashboard.json
inputs/ntp/alerts.json
inputs/procstat/alerts.json
inputs/mysql/alerts.json
inputs/mysql/dashboard.json
inputs/tomcat/dashboard.json
inputs/rabbitmq/dashboard.json
inputs/http_response/alerts.json
inputs/http_response/dashboard.json
inputs/net_response/alerts.json
inputs/net_response/dashboard.json
还需要继续开发的包括:
-
[ ] k8s solution -
[ ] nginx vts -
[ ] mongodb -
[ ] rocketmq -
[ ] activemq -
[ ] kafka -
[ ] elasticsearch -
[ ] prometheus discovery -
[ ] windows -
[ ] mssql -
[ ] iis -
[ ] weblogic -
[ ] was -
[ ] hadoop -
[ ] ad -
[ ] zookeeper -
[ ] statsd -
[ ] snmp -
[ ] ipmi -
[ ] smartctl -
[ ] logging -
[ ] trace
更多信息
如果还有问题,可以到 FAQ 中查找,我们会持续补充 FAQ 的内容,如果想加交流群,可以加我的微信:UlricGO 备注: Categraf加群+姓名+公司
本文由 mdnice 多平台发布