cp: cannot stat ‘test‘: No such file or directory

博客作者在执行Linux脚本时遇到因' '字符导致的问题,即脚本创建的目录名包含'test'$' '。通过分析,确定是由于Windows编辑器保存文件时的换行符格式导致。解决方案包括使用Notepad++将文件格式转换为UNIX格式或者在Vi/Vim中设置文件格式为UNIX。作者采用Notepad++的方法成功解决了问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

执行x.sh脚本 unzip ./xxx.zip -d ./test 创建解压目录test。继续执行cp -r test ./,报如下错误

访问test目录,报错如下

 

 在排除unzip ./xxx.zip -d ./test执行失败的可能的情况下,继续分析,发现目录被创建为'test'$'\r'

why?继续分析,在解决Linux运行脚本时 $'\r' 错误_juejiang坚持的博客-CSDN博客

找到解决方案。以下是方案内容摘要:

1、用notepad++编译器打开脚本,编辑->文档格式转换->转换为UNIX格式,然后保存。重新上传、运行,问题解决。

2、用vi/vim命令打开脚本文件,输入“:set fileformat=unix”,回车,保存退出。重新执行脚本,问题不在出现。

备注:本人采取第一种方式解决问题,第二种方式尚未验证。

``` !mkdir -p ~/.keras/datasets !cp work/mnist.npz ~/.keras/datasets/ import warnings warnings.filterwarnings("ignore") from keras.datasets import mnist #train_images 和 train_labels 组成了训练集(training set),模型将从这些数据中进行学习。 #然后在测试集(test set,即 test_images 和 test_labels)上对模型进行测试。 (train_images, train_labels), (test_images, test_labels) = mnist.load_data() train_images.shape#看下数据的维度 len(train_labels) train_labels test_images.shape len(test_labels) test_labels from keras import models from keras import layers # 构建神经网络模型 network = models.Sequential() network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,))) network.add(layers.Dense(10, activation='softmax')) network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) train_images = train_images.reshape((60000, 28 * 28)) train_images = train_images.astype('float32') / 255 test_images = test_images.reshape((10000, 28 * 28)) test_images = test_images.astype('float32') / 255 from keras.utils import to_categorical train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) network.fit(train_images, train_labels, epochs=5, batch_size=128) test_loss, test_acc = network.evaluate(test_images, test_labels) print('test_acc:', test_acc)```cp: cannot stat 'work/mnist.npz': No such file or directory;Using TensorFlow backend.;WARNING: Logging before flag parsing goes to stderr. W0407 05:07:41.395064 139824211502912 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:74: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead. W0407 05:07:41.399161 139824211502912 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead. W0407 05:07:41.404188 139824211502912 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.
最新发布
04-08
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值