买个笔记本好难

最近笔记本参加国家补贴,就想入手一台

心理价位在4千多,结合国补八折的补贴,可以买到6千出头的本子,于是就开始买了。。。

最开始看的是惠普,但是心理建设不足,大家普遍不看好,在和联想小新的对比之下,选择了联想小新,Pro14

在实体店看过之后,对比之下,线上还能便宜两百多,官旗,就在某平台下单了,可开心了,拿到快递当天晚上就想要用上,按下了开机键,看到屏幕开始转了,请稍等,说明上写的第一次开机可能比较久,耐心等待,结果到了12点,快3个小时了还在转,于是退货了

然后就在网上搜小新的开机问题,结果搜到了小新的低温锡虚焊问题,虽然不知道其他品牌是否使用低温锡,虽然不知道联想的其他系列虚焊问题是否频繁,虽然可能是因为联想的用户群比较庞大导致看起来问题比较多,但是看起来虚焊问题最多的就是拯救者和小新

也可能是在线上购买贪便宜的原因,于是目光转移到了实体店,我们去了华为

在价格高出了大几百的情况下入手了matebook14,现场开机验机没啥问题,这么冷还买了冰淇淋吃,开开心心回家了,开始捯饬新机

在下实打实的是一个电脑小白,踩了一个坑又是一个坑

当我双击了一张图片的时候,我发现有一双眼睛在瞪着我,一只大眼一只小眼,又好像是山地图的等高线,好大两座山

这就是那双眼睛,或者说是等高线

于是我去找了销售,销售说我们店里的样机都是这样的,都有这个问题,这个不是质量问题,让我去检测,呵呵,还得跑你华为检测中心去

我心里想都有问题就不是问题了是吗?预约了周六去检测,也没有人会给我报销这个去检测的路费

我也在网上搜了,这个应该就是传说中的抹布屏,都说是oled的普遍问题,难道普遍问题就不是问题吗?难道普遍问题就可以对顾客避而不谈吗?顾客不应该对你产品的缺陷有知情权吗?你不应该有告知义务吗?

又搜到了oled说是瞎眼屏,虽然夸张吧,但应该不会是空穴来风,下面是gpt给我的回答

基于Swin Transformer与ASPP模块的图像分类系统设计与实现 本文介绍了一种结合Swin Transformer与空洞空间金字塔池化(ASPP)模块的高效图像分类系统。该系统通过融合Transformer的全局建模能力和ASPP的多尺度特征提取优势,显著提升了模型在复杂场景下的分类性能。 模型架构创新 系统核心采用Swin Transformer作为骨干网络,其层次化窗口注意力机制能高效捕获长距离依赖关系。在特征提取阶段,创新性地引入ASPP模块,通过并行空洞卷积(膨胀率6/12/18)和全局平均池化分支,实现多尺度上下文信息融合。ASPP输出经1x1卷积降维后与原始特征拼接,有效增强了模型对物体尺寸变化的鲁棒性。 训练优化策略 训练流程采用Adam优化器(学习率0.0001)和交叉熵损失函数,支持多GPU并行训练。系统实现了完整的评估指标体系,包括准确率、精确率、召回率、特异度和F1分数等6项指标,并通过动态曲线可视化模块实时监控训练过程。采用早停机制保存最佳模型,验证集准确率提升可达3.2%。 工程实现亮点 1. 模块化设计:分离数据加载、模型构建和训练流程,支持快速迭代 2. 自动化评估:每轮训练自动生成指标报告和可视化曲线 3. 设备自适应:智能检测CUDA可用性,无缝切换训练设备 4. 中文支持:优化可视化界面的中文显示与负号渲染 实验表明,该系统在224×224分辨率图像分类任务中,仅需2个epoch即可达到92%以上的验证准确率。ASPP模块的引入使小目标识别准确率提升15%,特别适用于医疗影像等需要细粒度分类的场景。未来可通过轻量化改造进一步优化推理速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

n_rts

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值