卡尔曼滤波详解

1. 卡尔曼滤波能解决什么问题?

卡尔曼滤波用于解决含噪声的动态系统状态估计问题,例如:

  • 通过GPS和IMU数据估计车辆位置

  • 通过电压电流测量估计电池电量(SOC)

  • 雷达追踪飞行器轨迹

它的核心优势是:

  • 递归计算:只需前一时刻的状态,无需保存全部历史数据

  • 最优估计:在高斯噪声假设下给出最小均方误差估计

  • 实时性:计算量小,适合嵌入式系统


2. 卡尔曼滤波的五大核心公式

以下是卡尔曼滤波的完整数学表达,所有公式均可直接复制使用:

(1) 状态预测方程

 x̂ₖ|ₖ₋₁ = Fₖ x̂ₖ₋₁|ₖ₋₁ + Bₖ uₖ

  • x̂ₖ|ₖ₋₁:k时刻的预测状态

  • Fₖ:状态转移矩阵

  • Bₖ:控制输入矩阵

  • uₖ:控制量

 (2) 协方差预测方程

 Pₖ|ₖ₋₁ = Fₖ Pₖ₋₁|ₖ₋₁ Fₖᵀ + Qₖ

  • Pₖ|ₖ₋₁:预测状态协方差

  • Qₖ:过程噪声协方差

 (3) 卡尔曼增益计算

 Kₖ = Pₖ|ₖ₋₁ Hₖᵀ (Hₖ Pₖ|ₖ₋₁ Hₖᵀ + Rₖ)⁻¹

  • Kₖ:卡尔曼增益

  • Hₖ:观测矩阵

  • Rₖ:观测噪声协方差

 (4) 状态更新方程

x̂ₖ|ₖ = x̂ₖ|ₖ₋₁ + Kₖ (zₖ - Hₖ x̂ₖ|ₖ₋₁)
  • x̂ₖ|ₖ:更新后的状态估计

  • zₖ:实际观测值

(5) 协方差更新方程

Pₖ|ₖ = (I - Kₖ Hₖ) Pₖ|ₖ₋₁
  • Pₖ|ₖ:更新后的协方差矩阵

协方差(Covariance)在卡尔曼滤波中的作用

协方差矩阵 P 是卡尔曼滤波的核心组成部分,它直接反映了 状态估计的不确定性(即估计值与真实值之间的误差分布):

 量化估计的不确定性

  • Pk∣k​(更新后的协方差):表示当前状态估计的置信度。

    • 对角线元素:各状态变量的方差(如位置、速度的误差大小)。

    • 非对角线元素:状态变量之间的相关性(如位置误差与速度误差的关系)。

  • 物理意义

    • 若 P 较小 → 估计较准确(不确定性低)。

    • 若 P 较大 → 估计不可靠(不确定性高)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dr.Zeus

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值