背包问题详解:01背包、完全背包、多重背包

原创 2017年03月17日 11:47:48

参考链接:

  1. http://www.cnblogs.com/fengty90/p/3768845.html
  2. http://blog.csdn.net/mu399/article/details/7722810
  3. http://blog.csdn.net/xiaowei_cqu/article/details/8191808
  4. http://blog.csdn.net/insistgogo/article/details/11176693

背包问题是动态规划算法的一个典型实例,首先介绍动态规划算法:

动态规划:

  1. 基本思想:

动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中, 可能会有很多可行解。没一个解都对应于一个值,我们希望找到具有最优值的解。胎动规划算法与分治法类似,其基本思想也是将待求解问题分解为若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适用于动态规划算法求解的问题,经分解得到的子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算很多次。如果我们能保存已解决子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解决的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划算法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。

与分治法最大的差别是:适用于动态规划求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)

  1. 应用场景:

适用于动态规划的问题必须满足最优化原理、无后效性和重叠性。

(1) 最优化原理(最优子结构性质):一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。

(2) 无后效性:将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称无后效性。

(3) 子问题的重叠性:动态规划将原来具有指数级时间复杂度的搜索算法改进成了具有多项式时间复杂度的算法。其中的关键在于解决冗余,这就是动态规划算法的根本目的。动态规划实质上是一种以空间换时间的技术,它在实现的过程中,不得不存储产生过程中的各种状态,所以它的空间复杂度要大于其他算法。

01背包问题:

01背包问题描述:有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,每件物品数量只有一个,现在给你个承重为10的背包,如何让背包里装入的物品具有最大的价值总和?

动态规划的基本思路:将该问题转换成子问题,考虑五件物品在给定承重 C 的背包下最大价值为原问题,如下表所示,即为考虑abcde,C = 10时的最大价值,假设为f[5][10],原问题的解可以分解为两种情况,第一种情况是不考虑放入a只考虑放入bcde承重为C时的最大价值f[4][C],第二种情况是考虑放入a时的最大价值,即value[a]+f[4][10-weight[a]]。 原问题的解f[5][10]取上述两种情况中的最大值,即f[5][10] = max{f[4][10], (f[4][10-weight[a]+value[a]))}。 由此可以看出里面涉及到需要计算f[4][10]和f[4][10-weight[a]]即f[4][4]等子问题。 以此类推,自顶向下的分析可以看出原问题需要子问题的解,我们需要先计算出子问题的解,自底向上求解。求解方式如下表所示,顺序是自底向上、从左往右,或者从左往右、自底向上都可以。注意此问题中的abcde可以包含相同的物件,它们之间的顺序也可以是任意的,不影响最终的结果。

nameweightvalue012345678910
a260066991212151515
b230033669991011
c650000666661011
d540000666661010
e4600006666666

按上述描述的递推公式计算时,我们需要初始值,f[i][0]=0(1<=i<=5), f[1][j]=(j < weight[e])?0:value[e],(1<=j<=10)。代码如下:

#include <iostream>
using namespace std;


int knapsack(int *W, int *V, int *res, int n, int C)
{
    int value = 0;
    int **f = new int*[n];
    for(int i = 0; i < n; i++)
    {
        f[i] = new int[C+1];
    }

    for(int i = 0; i < n; i++)
        for(int j = 0; j <= C;j++)
            f[i][j] = 0;

    for(int i = 0; i < n; i++)
    {
        f[i][0] = 0;
    }
    for(int i = 1; i <= C; i++)
    {
        f[0][i] = (i < W[0])?0:V[0];
    }
    for(int i = 1; i < n; i++)
    {
        for(int y = 1; y <= C; y++)
        {
            if(y >= W[i])
            {
                f[i][y] = (f[i-1][y] > (f[i-1][y-W[i]] + V[i]))?f[i-1][y]:(f[i-1][y-W[i]] + V[i]);
            } else {
                f[i][y] = f[i-1][y];
            }
        }
    }

    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < C+1;j++)
           cout << f[i][j] << " ";
        cout << endl;
    }

    value = f[n-1][C];
    int j = n-1;
    int y = C;
    while(j)
    {
        if(f[j][y] == (f[j-1][y-W[j]] + V[j]))
        {
            res[j] = 1;
            y = y - W[j];
        }
        j--;
    }
    if(f[0][y])
    {
        res[0] = 1;
    }

    for(int i = 0; i < n;i++)
    {
        delete f[i];
        f[i] = 0;
    }
    delete [] f;
    f = 0;
    return value;
}

void test1()
{
    int n, C;
    while(cin >> n >> C)
    {
        int *W = new int[n];
        int *V = new int[n];
        int *res = new int[n];
        for(int i = 0; i < n; i++)
        {
            res[i] = 0;
        }
        int w = 0, v = 0, i = 0;
        while(i < n)
        {
            cin >> w >> v;
            W[i] = w;
            V[i] = v;
            i++;
        }
        int value = knapsack(W, V, res, n, C);
        cout << value << endl;
        for(int i = 0; i < n; i++)
            cout << res[i] << " ";
        cout << endl;
        delete W;
        delete V;
        delete res;
    }
}

int main()
{
    test1();
    return 0;
}

输入示例:

5 10      //5种物品,背包承重为10
2 6       //第一种物品,重量为2,价值为1,数目1个
2 3
6 5
5 4
4 6

输出示例:

0 0 6 6 6 6 6 6 6 6 6         //只放入第一种物品,承重为0-10的最优值结果
0 0 6 6 9 9 9 9 9 9 9         //放入第一种和第二种物品,承重为0-10的最优值结果
0 0 6 6 9 9 9 9 11 11 14      //放入第一种、第二种和第三种物品,承重为0-10的最优值结果
0 0 6 6 9 9 9 10 11 13 14     //放入前四种物品,承重为0-10的最优值结果
0 0 6 6 9 9 12 12 15 15 15    //放入五种物品,承重为0-10的最优值结果
15              //原问题的解,放入五种物品,承重为10的最优值结果
1 1 0 0 1       //背包中放入第一种、第二种、第五种物品时价值最高,1*6+1*3+0*5+0*4+1*6 = 15

完全背包问题:

完全背包问题描述:有编号分别为a,b,c,d的四件物品,它们的重量分别是2,3,4,7,它们的价值分别是1,3,5,9,每件物品数量无限个,现在给你个承重为10的背包,如何让背包里装入的物品具有最大的价值总和?

完全背包问题与01背包问题的区别在于每一件物品的数量都有无限个,而01背包每件物品数量只有一个。

问题解法其实和01背包问题一样,只是初始化的值和递推公式需要稍微变化一下。初始化时,当只考虑一件物品a时,f[1][j] = j/weight[a]。 递推公式计算时,f[i][y] = max{f[i-1][y], (f[i][y-weight[i]]+value[i])},注意这里当考虑放入一个物品 i 时应当考虑还可能继续放入 i,因此这里是f[i][y-weight[i]]+value[i], 而不是f[i-1][y-weight[i]]+value[i]。

nameweightvalue012345678910
d79001 3 5 5 6 9 10 10 12
c450 0 1 3 5 5 6 8 10 10 11
b330 0 1 3 3 4 6 6 7 9 9
a210 0 1 1 2 2 3 3 4 4 5

代码如下:

#include <iostream>
using namespace std;


int knapsack_complete(int *W, int *V, int *res, int n, int C)
{
    int value = 0;
    int **f = new int*[n];
    for(int i = 0; i < n; i++)
    {
        f[i] = new int[C+1];
    }

    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < C+1; j++)
            f[i][j] = 0;
    }
    for(int y = 1; y < C+1; y++)
    {
        f[0][y] = (y < W[0])?0:((y/W[0])*V[0]);
    }

    for(int i = 1; i < n; i++)
    {
        for(int y = 1; y < C+1; y++)
        {
            if(y < W[i])
            {
                f[i][y] = f[i-1][y];
            } else {
                f[i][y] = (f[i-1][y] > (f[i][y-W[i]]+V[i]))?f[i-1][y]:(f[i][y-W[i]]+V[i]);
            }
        }
    }

    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < C+1; j++)
            cout << f[i][j] << " ";
        cout << endl;
    }

    value = f[n-1][C];
    int j = n-1;
    int y = C;
    while(j)
    {
        if(f[j][y] == (f[j][y-W[j]]+V[j]))
        {
            res[j]++;
            y = y - W[j];
        }
        j--;
    }
    res[0] = f[0][y]/V[0];

    for(int i = 0; i < n; i++)
    {
        delete f[i];
        f[i] = 0;
    }
    delete [] f;
    f = 0;
    return value;
}
void test1()
{
    int n, C;
    while(cin >> n >> C)
    {
        int *W = new int[n];
        int *V = new int[n];
        int *res = new int[n];
        for(int i = 0; i < n; i++)
        {
            res[i] = 0;
        }
        int i = 0, w, v;
        while(i < n)
        {
            cin >> w >> v;
            W[i] = w;
            V[i] = v;
            i++;
        }
        int value = knapsack_complete(W, V, res, n, C);
        cout << value << endl;
        for(int i = 0; i < n; i++)
            cout << res[i] << " ";
        cout << endl;
        delete W; W = 0;
        delete V; V = 0;
        delete res; res = 0;
    }
}

int main()
{
    test1();
    return 0;
}

输入示例:

4 10         //4种物品,背包承重为10
2 1          //第一种物品,重量为2,价值为1,数目不限
3 3
4 5
7 9

输出示例:

0 0 1 1 2 2 3 3 4 4 5        //只放入第一种物品,承重为0-10的最优值结果
0 0 1 3 3 4 6 6 7 9 9        //放入第一种和第二种物品,承重为0-10的最优值结果
0 0 1 3 5 5 6 8 10 10 11     //放入第一种、第二种和第三种物品,承重为0-10的最优值结果
0 0 1 3 5 5 6 9 10 10 12     //放入四种物品,承重为0-10的最优值结果
12           //原问题的解,放入四种物品,承重为10的最优值结果
0 1 0 1      //第一种物品放0个,第二种物品放1个,第三种物品放0个,第四种物品放1个,0*1+1*3+0*5+1*9 = 12

多重背包问题:

多重背包问题描述:有编号分别为a,b,c的三件物品,它们的重量分别是1,2,2,它们的价值分别是6,10,20,他们的数目分别是10,5,2,现在给你个承重为 8 的背包,如何让背包里装入的物品具有最大的价值总和?

多重背包和01背包、完全背包的区别:多重背包中每个物品的个数都是给定的,可能不是一个,绝对不是无限个。

有两种解法,解题思路:

  1. 作为一个新问题考虑,由于每个物品多了数目限制,因此初始化和递推公式都需要更改一下。初始化时,只考虑一件物品a时,f[1][j] = min{num[1], j/weight[1]}。 计算考虑i件物品承重限制为y时最大价值f[i][y]时,递推公式考虑两种情况,要么第 i 件物品一件也不放,就是f[i-1][y], 要么第 i 件物品放 k 件,其中 1 <= k <= (y/weight[i]),考虑这一共 k+1 种情况取其中的最大价值即为f[i][y]的值,即f[i][y] = max{f[i-1][y], (f[i-1][y-k*weight[i]]+k*value[i])}。 这里为什么不能像完全背包一样直接考虑f[i][y-weight[i]]+value[i]呢?因为这样不容易判断第 i 件物品的个数是否超过限制数量 num[i]。
nameweightvaluenum012345678
c22020 6 20 26 40 46 52 58 64
b21050 6 12 18 24 30 36 42 48
a16100 6 12 18 24 30 36 42 48

代码如下:

#include <iostream>
using namespace std;


int knapsack_limitnum(int *W, int *V, int *N, int *res, int n, int C)
{
    int value = 0;
    int **f = new int*[n];
    for(int i = 0; i < n; i++)
    {
        f[i] = new int[C+1];
    }
    for(int i = 0; i < n; i++)
        for(int j = 0; j < C+1; j++)
            f[i][j] = 0;

    for(int y = 1; y < C+1; y++)
    {
        int count = min(N[0], y/W[0]);
        f[0][y] = (y < W[0])?0:(count * V[0]);
    }

    for(int i = 1; i < n; i++)
    {
        for(int y = 1; y < C+1; y++)
        {
            if(y < W[i])
            {
                f[i][y] = f[i-1][y];
            } else {
                int count = min(N[i], y/W[i]);
                f[i][y] = f[i-1][y];
                for(int k = 1; k <= count; k++)
                {
                    int temp = f[i-1][y-W[i]*k] + k*V[i];
                    if(temp >= f[i][y])
                        f[i][y] = temp;
                }
            }
        }
    }

    for(int i = 0; i < n; i++)
    {
        for(int y = 0; y < C+1; y++)
            cout << f[i][y] << " ";
        cout << endl;
    }

    value = f[n-1][C];
    int j = n-1;
    int y = C;
    while(j)
    {
        int count = min(N[j], y/W[j]);
        for(int k = count; k > 0; k--)
        {
            if(f[j][y] == (f[j-1][y-W[j]*k]+k*V[j]))
            {
                res[j] = k;
                y = y - k*W[j];
                break;
            }
        }
        j--;
    }
    res[0] = f[0][y]/V[0];


    for(int i = 0;i < n; i++)
    {
        delete f[i];
        f[i] = 0;
    }
    delete [] f;
    f = 0;
    return value;
}

void test1()
{
    int n, C;
    while(cin >> n >> C)
    {
        int *W = new int[n];
        int *V = new int[n];
        int *N = new int[n];
        int *res = new int[n];
        for(int i =0; i < n; i++)
            res[i] = 0;
        int w, v, n1, i = 0;
        while(i < n)
        {
            cin >> w >> v >> n1;
            W[i] = w;
            V[i] = v;
            N[i] = n1;
            i++;
        }
        int value = knapsack_limitnum(W, V, N, res, n, C);
        cout << value << endl;
        for(int i = 0; i < n; i++)
            cout << res[i] << " ";
        cout << endl;
        delete res; res = 0;
        delete N; N = 0;
        delete V; V = 0;
        delete W; W = 0;
    }
}


int main()
{
    test1();
    return 0;
}

输入示例:

3 8           //3件物品,背包承重最大为8
1 6 10        //第一件物品, 重量为1,价值为6, 数目为10
2 10 5
2 20 2

输出结果:

0 6 12 18 24 30 36 42 48    //放入第一种物品,承重限制为0-8的最优值结果
0 6 12 18 24 30 36 42 48    //放入第一种和第二种物品,承重限制为0-8的最优值结果
0 6 20 26 40 46 52 58 64    //放入三种物品,承重限制为0-8的最优值结果
64            //原问题的解,在背包承重为8中放3种物品最大价值为64
4 0 2         //最优解对应第一件物品放4个,第二件物品放0个,第三件物品放2个,即4*6+0*10+2*20 = 64
  1. 多重背包的第二种解法,由01背包的分析可知,01背包中允许放入的物品有重复,即01背包中如果考虑要放入的物品的重量和价格相同,不影响最终的结果,因为我们可以考虑把多重背包问题中限制数目的物品拆分成单独的一件件物品,作为01背包问题考虑。问题解法和01背包一致,这里不再列举出动态规划的表格了。

代码:

#include <iostream>
#include <vector>
using namespace std;


int knapsack_limitnum(vector<int> &W, vector<int> &V, vector<int> &res, int C)
{
    int value = 0;
    int **f = new int*[W.size()];
    for(int i = 0; i < W.size(); i++)
    {
        f[i] = new int[C+1];
    }
    for(int i = 0; i < W.size(); i++)
    {
        f[i][0] = 0;
    }
    for(int i = 1; i < C+1; i++)
    {
        f[0][i] = (i < W[0])?0:V[0];
    }
    for(int i = 1; i < W.size(); i++)
    {
        for(int y = 1; y < C+1; y++)
        {
            if(y < W[i])
            {
                f[i][y] = f[i-1][y];
            } else {
                f[i][y] = (f[i-1][y] > (f[i-1][y-W[i]]+V[i]))?f[i-1][y]:(f[i-1][y-W[i]]+V[i]);
            }
        }
    }
    value = f[W.size()-1][C];
    int j = W.size()-1;
    int y = C;
    while(j)
    {
        if(f[j][y] == (f[j-1][y-W[j]]+V[j]))
        {
            res[j] = 1;
            y -= W[j];
        }
        j--;
    }
    res[0] = (f[0][y])?1:0;
    for(int i = 0; i < W.size(); i++)
    {
        delete f[i];
        f[i] = 0;
    }
    delete [] f;
    f = 0;
    return value;
}

void test1()
{
    int n, C;
    while(cin >> n >> C)
    {
        vector<int> W;
        vector<int> V;
        int *N = new int[n];
        int w, v, n1, i = 0;
        while(i < n)
        {
            cin >> w >> v >> n1;
            N[i] = n1;
            while(n1--)
            {
                W.push_back(w);
                V.push_back(v);
            }
            i++;
        }
        vector<int> res;
        for(int i = 0;i < W.size(); i++)
            res.push_back(0);
        int value = knapsack_limitnum(W, V, res, C);
        cout << value << endl;
        i = 0;
        int j = 0;
        int count = 0, sum = N[i];
        while(j < res.size())
        {
            if(j < sum)
            {
                if(res[j])
                    count++;
            } else {
                cout << count << " ";
                i++;
                sum += N[i];
                count = (res[j])?1:0;
            }
            j++;
        }
        cout << count << endl;
        delete N; N = 0;
    }
}

int main()
{
    test1();
    return 0;
}

输入示例:

3 8           //3件物品,背包承重最大为8
1 6 10        //第一件物品, 重量为1,价值为6, 数目为10
2 10 5
2 20 2

执行结果:

64            //原问题的解,在背包承重为8中放3种物品最大价值为64
4 0 2         //最优解对应第一件物品放4个,第二件物品放0个,第三件物品放2个,即4*6+0*10+2*20 = 64
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/na_beginning/article/details/62884939

经典算法(2)——0/1背包问题(动态规划法)

本博客(http://blog.csdn.net/livelylittlefish)贴出作者(三二一、小鱼)相关研究、学习内容所做的笔记,欢迎广大朋友指正!                      ...
  • livelylittlefish
  • livelylittlefish
  • 2008-03-16 00:07:00
  • 74332

九种背包问题,让你永恒拥有背包算法(贪心)

P01: 01背包问题  题目  有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。  ...
  • ppp_1026hc
  • ppp_1026hc
  • 2016-08-06 19:22:45
  • 7148

【动态规划】常见背包问题合集

01背包:  有N件物品和一个容量为V的背包。(每件物品只有一件)第i件物品的费用是c[i],价值是v[i],求解将哪些物品装入背包使总价值最大。 转移方程:f[i][v]=max{f[i-1][v]...
  • Hemk340200600
  • Hemk340200600
  • 2017-03-20 23:14:28
  • 1140

动态规划之01背包问题(最易理解的讲解)

01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。 01背包的状态转换方程 f[i,j] = M...
  • mu399
  • mu399
  • 2012-07-06 17:09:37
  • 252908

背包问题细节探析

引言:上一周在看《背包九讲》,这周也在练习背包型动态规划的题目,在这里分享几点学习过程中的体会,涉及到空间优化:二维转一维的理解以及循环顺序的理解,最后会析背包问题的一些变种问题。为了叙述方便,这篇博...
  • u012280578
  • u012280578
  • 2017-06-08 21:12:57
  • 612

背包问题总结

本文基于背包九讲的内容编写,添加了例题和一些自己的想法。   一、01背包问题 题目: 有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的...
  • xiaoquantouer
  • xiaoquantouer
  • 2016-12-04 15:09:09
  • 1679

01背包问题和完全背包问题

在hihocoder上面两期的题目,一个01背包问题,一个完全背包问题。总结一下!...
  • KangRoger
  • KangRoger
  • 2014-08-27 10:27:28
  • 54094

背包问题详解

背包问题 背包问题(Knapsack problem)是一种组合优化的NP完全问题。问题可以描述为:给定一组物品,每种物品都有自己的体积和价值,在限定的总体积内,我们如何选择,才能使得物品的总价值最高...
  • sustliangbo
  • sustliangbo
  • 2013-08-04 22:21:34
  • 6181

动态规划0—1背包问题

动态规划0-1背包问题 Ø    问题描述:    给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包的物品,使得装 入背包中物品的总价值最大? Ø   对于...
  • dapengbusi
  • dapengbusi
  • 2012-04-15 23:54:31
  • 112636

一般背包问题

#include #include using namespace std; struct bag{ int w;//物品的重量 int v;//物品的价值 double c;//物品的性价比...
  • acm_JL
  • acm_JL
  • 2016-03-15 14:35:25
  • 756
收藏助手
不良信息举报
您举报文章:背包问题详解:01背包、完全背包、多重背包
举报原因:
原因补充:

(最多只允许输入30个字)