题目背景
一年一度的“跳石头”比赛又要开始了!
题目描述
这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石。组委会已经选择好了两块岩石作为比赛起点和终点。在起点和终点之间,有 N N N 块岩石(不含起点和终点的岩石)。在比赛过程中,选手们将从起点出发,每一步跳向相邻的岩石,直至到达终点。
为了提高比赛难度,组委会计划移走一些岩石,使得选手们在比赛过程中的最短跳跃距离尽可能长。由于预算限制,组委会至多从起点和终点之间移走 M M M 块岩石(不能移走起点和终点的岩石)。
输入输出格式
输入格式
第一行包含三个整数 L , N , M L,N,M L,N,M,分别表示起点到终点的距离,起点和终点之间的岩石数,以及组委会至多移走的岩石数。保证 L ≥ 1 L \geq 1 L≥1 且 N ≥ M ≥ 0 N \geq M \geq 0 N≥M≥0。
接下来 N N N 行,每行一个整数,第 i i i 行的整数 KaTeX parse error: Expected 'EOF', got '&' at position 8: D_i( 0 &̲lt; D_i < L), 表示第 i i i 块岩石与起点的距离。这些岩石按与起点距离从小到大的顺序给出,且不会有两个岩石出现在同一个位置。
输出格式
一个整数,即最短跳跃距离的最大值。
输入输出样例
输入样例
25 5 2
2
11
14
17
21
输出样例
4
说明
输入输出样例 1 说明:将与起点距离为 2 2 2和 14 14 14 的两个岩石移走后,最短的跳跃距离为 4 4 4(从与起点距离 17 17 17 的岩石跳到距离 21 21 21 的岩石,或者从距离 21 21 21 的岩石跳到终点)。
另:对于 20 % 20\% 20%的数据, 0 ≤ M ≤ N ≤ 10 0 ≤ M ≤ N ≤ 10 0≤M≤N≤10。
对于 50 % 50\% 50%的数据, 0 ≤ M ≤ N ≤ 100 0 ≤ M ≤ N ≤ 100 0≤M≤N≤100。
对于 100 % 100\% 100%的数据, 0 ≤ M ≤ N ≤ 50 , 000 , 1 ≤ L ≤ 1 , 000 , 000 , 000 0 ≤ M ≤ N ≤ 50,000,1 ≤ L ≤ 1,000,000,000 0≤M≤N≤50,000,1≤L≤1,000,000,000。
这用二分查找,一开始就想错了,我想的是正确答案一定是搬走M快石头,就一直想怎么搬石头。做题之前知道用二分,但是一直和二分挂不上,看了大佬的题解,思路基本上上都是这样。
先确定距离,然后看要搬的石头数满足题意吗。距离确定了,就好办了,吧间距小于确定距离的需要全部搬走。
做题的时候还有个理解错误,我在想如果连续的间隙一如何搬,但实际上,这样想就是吧石头间的间隙给固化了。间隙之和前一个有关系,而前一个可能被搬走了。
所以judge函数了,用s记录上一个石头距离起点的位置,当前就是num[i]-s。这样就不用了考虑连续相同间隙如何处理了。
二分也算是搜索吧。想想其实,有时候不需要想的很精巧,计算机最大的优点就是计算啊。搜索可以解决很多问题。
#include<cstdio>
using namespace std;
int num[2000000];
//两地之间距离
int L,N,M;
//判断最短距离m是否符合条件
int judge(int x)
{
//s指当前距离起点的位置,count计当前搬走了多少石头
int s=0,count=0;
//枚举第1到终点的n+1块石头
for(int i=1;i<=N+1;i++)
{
//如果第i块石头的距离减去s,意思是这两块石头之间的距离! 若两块之间的距离<期望的距离
if(num[i]-s<x)
count++;
else
s=num[i];
}
//不满足最大的搬运量
if(count>M)
return 0;
return 1;
}
int main()
{
int ans;
scanf("%d %d %d",&L,&N,&M);
num[0]=0;
for(int i=1;i<=N;i++)
scanf("%d",&num[i]);
num[N+1]=L;
int l=0,r=L,mid;
while (l<=r)
{
mid=(l+r)/2;
//mid满足题意,在向右找有没有更大的
if(judge(mid))
{
l=mid+1;
ans=mid;
}
//mid不满足题意,向小了的找
else
r=mid-1;
}
printf("%d",ans);
return 0;
}