因为明天没有考试,所以干脆今晚就把最后一题的题解肝出来!开始
题目描述
题目:https://vjudge.net/problem/HDU-1232
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。
Sample Input
4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0
Sample Output
1
0
2
998
思路分析
因为我并查集做的还不够多,所以题型特点总结可能不大好。我现在的理解是:对于这种有公共元素就要放在一个集合里看待的题型就是并查集(emmmmmm…很奇怪)。回到这道题:我们的思路就是找出这些联通的城市能够组成几个城市群(内部能互相连通),那么,我们所要建的桥梁数目就是城市群数-1。
接下来就是思考怎么求城市群数了,这里当然就要用到并查集了。建立一个数组,每个元素代表这个编号的元素,而这个元素的值代表的就是和他连同的一个城市。
输入1 2后:
(此时,1的根节点为2)
经过一系列操作,就可以将一个城市群连成一个链状结构。但是,这里又引出了一个问题:链状结构,每次添加新的节点都需要找根节点,非常耗时,不能完成这道题。因此,我们还需要另一种思考方式。
我们可以这样思考:每个城市群,我们可以选出一个作为中心,所有连通的节点都接到这个中心来。每次有新节点连通时,我们只需要将他连到这个中心来就可以了。
但如果接着往下想,若4号城市不是根节点呢?思考后,我的通解(适用于任意情况)就是:分别找出两个城市自己的中心(根节点),然后选择其中一个为新的城市群的中心(根节点),另一个城市群里的城市中心(下标对应元素)全部改为新的城市中心(根节点),就能完成这个过程(这大概就是路径压缩吧)。
那么下面就是完整代码了:
完整代码
#include <stdio.h>
inline void swap(int &a,int &b)
{
int t=b;
b=a;
a=t;
}
int n,m;
int main()
{
while(~scanf("%d",&n)&&n)
{
bool vis[1001][1001]={0};
scanf("%d",&m);
int citys[1001];
for(int i=1;i<=n;i++)
{
citys[i]=i;
}
for(int i=0;i<m;i++)
{
int t1,t2;
scanf("%d %d",&t1,&t2);
if(t1>t2) swap(t1,t2);
if(vis[t1][t2]==1) continue;
vis[t1][t2]=1;//这里其实还有另一种方法:当搜索完r1、r2的根节点后若r1==r2,则continue。
int r1=t1;
int r2=t2;
while(r1!=citys[r1]) r1=citys[r1];
while(r2!=citys[r2]) r2=citys[r2];
citys[r2]=r1;
for(int j=0;j<n;j++)
{
if(citys[j]==r2) citys[j]=r1;
}
}
int counter=0;
for(int i=1;i<=n;i++)
{
if(citys[i]==i) counter++;
}
if(counter==1) printf("0\n");
else printf("%d\n",counter-1);
}
return 0;
}
这道题对我来说还是有点难度的,希望继续努力,尽快攻克这类题。