POJ - 3134 Power Calculus解题报告(IDA*)

题目描述:

题目链接:https://vjudge.net/problem/POJ-3134
大概意思:输入一个数n,只能使用乘除法,求出要算出x^n所需要的运算次数(之前用过的数可以重复利用,例如:X ^4可以用xx=x ^2,x ^2x ^2=x ^4,运算两次得出。)

思路分析

这道题说是乘除法,但是因为底数给的是x,所以我们需要算的只有指数部分,所以就相当于只能用加减法。问题就变成了:从1到n,只能用加减法,经过多少次运算可以得到。
若使用dfs,就不知道要搜索多少层。而若使用bfs,因为每一步都要使用前一步的数据,所以数据增加的很快,队列可能会爆掉。因此,使用加深迭代搜索(限制深度地进行搜索)是比较合适的。
另外,这里我们可以用一个估值函数进行剪枝,以提高效率。这里的估值函数是:假设从现在到现在制定的最大深度位置,每步都以最快的速度增长(每次都是*2就是增长最快)的之后仍然小于n,则这个情况可以剪枝掉。

完整代码

#include <iostream>
#include <cmath>
using namespace std;

int val[1010]={0};
int pos,depth;
int n;
bool ida(int now)
{
	if(now>depth) return false;
	if(val[pos]<<(depth-now)<n) return false;
	if(val[pos]==n) return true;
	pos++;
	for(int i=0;i<pos;i++)
	{
		val[pos]=val[pos-1]+val[i];
		if(ida(now+1)) return true;
		val[pos]=fabs(val[pos-1]-val[i]);
		if(ida(now+1)) return true;
	}
	pos--;
	return false;
}



int main()
{
	while(cin>>n&&n!=0)
	{
		depth=0;
		while(true)
		{
			val[0]=1;
			pos=0;
			if(ida(0)) break;
			depth++;
		}
		cout<<depth<<endl;
	}
	return 0;
}

经过两道题,我对IDDFS有个理解:每次搜索都是从头开始搜索的。不知道这部分是否有能进行记忆化搜索,加快效率的方法。

这是一道比较经典的计数问题。题目描述如下: 给定一个 $n \times n$ 的网格图,其中一些格子被标记为障碍。一个连通块是指一些被标记为障碍的格子的集合,满足这些格子在网格图中连通。一个格子是连通的当且仅当它与另一个被标记为障碍的格子在网格图中有公共边。 现在,你需要计算在这个网格图中,有多少个不同的连通块,满足这个连通块的大小(即包含的格子数)恰好为 $k$。 这是一道比较经典的计数问题,一般可以通过计算生成函数的方法来解决。具体来说,我们可以定义一个生成函数 $F(x)$,其中 $[x^k]F(x)$ 表示大小为 $k$ 的连通块的个数。那么,我们可以考虑如何计算这个生成函数。 对于一个大小为 $k$ 的连通块,我们可以考虑它的形状。具体来说,我们可以考虑以该连通块的最左边、最上边的格子为起点,从上到下、从左到右遍历该连通块,把每个格子在该连通块中的相对位置记录下来。由于该连通块的大小为 $k$,因此这些相对位置一定是 $(x,y) \in [0,n-1]^2$ 中的 $k$ 个不同点。 现在,我们需要考虑如何计算这些点对应的连通块是否合法。具体来说,我们可以考虑从左到右、从上到下依次处理这些点,对于每个点 $(x,y)$,我们需要考虑它是否能够与左边的点和上边的点连通。具体来说,如果 $(x-1,y)$ 和 $(x,y)$ 都在该连通块中且它们在网格图中有公共边,那么它们就是连通的;同样,如果 $(x,y-1)$ 和 $(x,y)$ 都在该连通块中且它们在网格图中有公共边,那么它们也是连通的。如果 $(x,y)$ 与左边和上边的点都不连通,那么说明这个点不属于该连通块。 考虑到每个点最多只有两个方向需要检查,因此时间复杂度为 $O(n^2 k)$。不过,我们可以使用类似于矩阵乘法的思想,将这个过程优化到 $O(k^3)$ 的时间复杂度。 具体来说,我们可以设 $f_{i,j,k}$ 表示状态 $(i,j)$ 所代表的点在连通块中,且连通块的大小为 $k$ 的方案数。显然,对于一个合法的 $(i,j,k)$,我们可以考虑 $(i-1,j,k-1)$ 和 $(i,j-1,k-1)$ 这两个状态,然后把点 $(i,j)$ 加入到它们所代表的连通块中。因此,我们可以设计一个 $O(k^3)$ 的 DP 状态转移,计算 $f_{i,j,k}$。 具体来说,我们可以考虑枚举连通块所包含的最右边和最下边的格子的坐标 $(x,y)$,然后计算 $f_{x,y,k}$。对于一个合法的 $(x,y,k)$,我们可以考虑将 $(x,y)$ 所代表的点加入到 $(x-1,y,k-1)$ 和 $(x,y-1,k-1)$ 所代表的连通块中。不过,这里需要注意一个细节:如果 $(x-1,y)$ 和 $(x,y)$ 在网格图中没有相邻边,那么它们不能算作连通的。因此,我们需要特判这个情况。 最终,$f_{n,n,k}$ 就是大小为 $k$ 的连通块的个数,时间复杂度为 $O(n^2 k + k^3)$。 参考代码:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值