修建公路1:最小生成树(克鲁斯卡尔算法)

题目描述

L城一共有 N个小区。

小明是城市建设的规划者,他计划在城市修M条路,每修建一条路都要支付工人们相应的工钱(需要支付的工钱 == 路的长度)。

然而小明所拿到的经费并不够支付修建 M条路的工钱,于是迫于无奈,他只能将计划改变为修建若干条路,使得 N个小区之间两两联通。

小明希望尽量剩下更多的经费投入到别的项目中,因此请你通过程序帮他计算出完成计划所需的最低开销。

输入描述

输入第一行包含三个正整数 N,M。

第 22 到M + 1行每行包含三个正整数 u,v,w,表示 u↔v 之间存在一条距离为 w 的路。

输出描述

输出占一行,包含一个整数,表示完成计划所需的最低开销。

若无法完成计划,则输出 -1。

输入输出样例

示例 1

输入

5 6
1 2 2
1 3 7
1 4 6
2 3 1
3 4 3
3 5 2

输出

8

import os
import sys

# 请在此输入您的代码
MAXV = 10**5
vset = [i for i in range(MAXV)]
E = []  #存放所有边的列表

N, M = map(int, input().split())

for i in range(M):
    x, y, z = map(int, input().split())
    E.append([x, y, z])
E.sort(key=lambda x: x[2])  #按权值递增排序

def find(x):  #这个函数很好
  if vset[x] != x:
    vset[x] = find(vset[x])
  return vset[x]

def krustal():
    res = 0
    for i in range(N):
        vset[i] = i
    cnt = 0  #生成的边数
    for j in range(M):
        u, v, w = E[j][0], E[j][1], E[j][2]
        fu, fv = find(u), find(v)
        if fu != fv:
            res += w
            cnt += 1
            vset[fu] = fv  #添加后合并连通分量,将编号改为相同

    if cnt < N - 1:  #最小生成树边数为顶点数-1
        return -1
    else:
        return res

print(krustal())

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值