题目描述
L城一共有 N个小区。
小明是城市建设的规划者,他计划在城市修M条路,每修建一条路都要支付工人们相应的工钱(需要支付的工钱 == 路的长度)。
然而小明所拿到的经费并不够支付修建 M条路的工钱,于是迫于无奈,他只能将计划改变为修建若干条路,使得 N个小区之间两两联通。
小明希望尽量剩下更多的经费投入到别的项目中,因此请你通过程序帮他计算出完成计划所需的最低开销。
输入描述
输入第一行包含三个正整数 N,M。
第 22 到M + 1行每行包含三个正整数 u,v,w,表示 u↔v 之间存在一条距离为 w 的路。
输出描述
输出占一行,包含一个整数,表示完成计划所需的最低开销。
若无法完成计划,则输出 -1。
输入输出样例
示例 1
输入
5 6
1 2 2
1 3 7
1 4 6
2 3 1
3 4 3
3 5 2
输出
8
import os
import sys
# 请在此输入您的代码
MAXV = 10**5
vset = [i for i in range(MAXV)]
E = [] #存放所有边的列表
N, M = map(int, input().split())
for i in range(M):
x, y, z = map(int, input().split())
E.append([x, y, z])
E.sort(key=lambda x: x[2]) #按权值递增排序
def find(x): #这个函数很好
if vset[x] != x:
vset[x] = find(vset[x])
return vset[x]
def krustal():
res = 0
for i in range(N):
vset[i] = i
cnt = 0 #生成的边数
for j in range(M):
u, v, w = E[j][0], E[j][1], E[j][2]
fu, fv = find(u), find(v)
if fu != fv:
res += w
cnt += 1
vset[fu] = fv #添加后合并连通分量,将编号改为相同
if cnt < N - 1: #最小生成树边数为顶点数-1
return -1
else:
return res
print(krustal())