《剑指offer》每日三题(第三天)

剑指 Offer 19. 正则表达式匹配

从暴力递归:这里是引用
到动态规划:
在这里插入图片描述

递归代码:

class Solution {
    public boolean isMatch(String s, String p) {
        return match(s,p,0,0,s.length(),p.length());
    }

    private boolean match(String s, String p,int i,int j,int sl,int pl){
        //判断结束
        if(i==sl&&j==pl){//同时结束
            return true;
        }else if(j==pl){//正则串结束
            return false;
        }else if(i==sl){//主串结束正则还有
            //正则剩奇数个一定不匹配
            if((pl-j)%2!=0)return false;
            //剩下的必须隔一个字符有一个*才可匹配
            int t=j+1;
            while(t<pl){
                if(p.charAt(t)!='*'){
                    return false;
                }
                t+=2;
            }
            return true;
        }

        char tmp='A';
        if(j+1<pl){
            tmp=p.charAt(j+1);//如果p.charAt(j+1)=='*' 需要考虑匹配多少次
        }
        if(tmp!='*'){
            if(s.charAt(i)==p.charAt(j)||p.charAt(j)=='.'){
                return match(s,p,i+1,j+1,sl,pl);//继续匹配
            }else{
                return false;
            }
        }else{
            if(s.charAt(i)==p.charAt(j)||p.charAt(j)=='.'){
                return match(s,p,i+1,j,sl,pl)||match(s,p,i,j+2,sl,pl);//匹配和不匹配两种情况
            }else{
                return match(s,p,i,j+2,sl,pl);//只能不匹配
            }
        }
    }
}

动态规划:这里通过一个二维数组dp[i][j]来记录s的前i个字符和p的前j个字符是否匹配
当遇到*的时候我们的n次匹配就直接找前面的就行了。

这里对着我们暴力递归的代码优化即可:
可得状态转移方程:
> ![在这里插入图片描述](https://img-blog.csdnimg.cn/538b980db9824088bc06ad8f6d4c152b.png

初始化dp数组:
两个空串匹配为true,所以dp[0][0]=true;
正则串q为空,s不为空为false,所以dp[i][0]=false;
其余不动

动态规划代码:

class Solution {
    public boolean isMatch(String s, String p) {
        return match2(s,p);
    }

//动态规划
    private boolean match2(String s, String p){
        boolean dp[][]=new boolean[s.length()+1][p.length()+1];
        dp[0][0]=true;
        for(int i=0;i<=s.length();i++){
            for(int j=1;j<=p.length();j++){//dp[i][0]全false 直接从1开始即可
                if(p.charAt(j-1)=='*'){
                    if(i>=1&&j>=2&&(s.charAt(i-1)==p.charAt(j-2)||p.charAt(j-2)=='.')){
                        dp[i][j]=dp[i-1][j];
                    }
                    if(j>=2){
                        dp[i][j]|=dp[i][j-2];
                    }
                }else{
                    if(i>=1&&(s.charAt(i-1)==p.charAt(j-1)||p.charAt(j-1)=='.')){
                        dp[i][j]=dp[i-1][j-1];
                    }else{
                        dp[i][j]=false;
                    }
                }
            }
        }
        return dp[s.length()][p.length()];
    }
}

剑指 Offer 20. 表示数值的字符串

20.表示数值的字符串这里是引用

代码实现

class Solution {
    public boolean isNumber(String s) {
        s=s.trim();
        System.out.println(s);
        boolean isNum=false;//是否出现过数字
        boolean isPoint=false;//是否出现过小数点
        boolean isE=false;//是否出现过E,e
        for(int i=0;i<s.length();i++){
            char c=s.charAt(i);
            //代表出现过数字了
            if(Character.isDigit(c)){
                isNum=true;
            }else if(c=='+'||c=='-'){//出现了+-号,判断是不是在第一位或在e后面
                if(i!=0&&(s.charAt(i-1)!='E'&&s.charAt(i-1)!='e')){
                    return false;
                }
            }else if(c=='.'){//出现了. 判断有没有出现过e 或 在e前面且出现过数字
                if(isE||isPoint){//1 e不能在.前面 2 .只能出现一次
                    return false;
                }
                isPoint=true;
                isNum|=isNum;//这时isNum用于判断.前面后面任一位置有没有出现数字,只要有就是true
            }else if(c=='e'||c=='E'){//出现了e,找到e出现的所有错误情况
                //1 e出现了不止一次 2 e和.同时出现 非2.e .2e 2.2e 的形式 也就是必须前面要有数字 3 e前面必须要有数字  可以发现2 3两点可以结和成 鹅、前面必须有数字
                if(isE||!isNum){
                    return false;
                }
                isE=true;
                isNum=false;//这时isNum用于判断e后面有没有出现数字
            }else{
                return false;
            }
        }
        return isNum;
    }
}

剑指 Offer 29. 顺时针打印矩阵

29. 顺时针打印矩阵

在这里插入图片描述

代码实现:

class Solution {
    public int[] spiralOrder(int[][] matrix) {
        int m=matrix.length;
        //特殊情况处理
        if(m==0)return new int[0];
        int n=matrix[0].length;
        if(n==0)return new int[0];
        int[] nums=new int[m*n];
        
        boolean[][] isPrint=new boolean[m][n];
        int t=0;//每打印一次t++一次
        int i=0,j=0;
        while(t<m*n){
            //右
            while(j<n){
                if(isPrint[i][j]!=true){
                    nums[t++]=matrix[i][j];
                    isPrint[i][j++]=true;
                }else{
                    break;
                }
            }
            j--;
            i++;
            //下
            while(i<m){
                if(isPrint[i][j]!=true){
                    nums[t++]=matrix[i][j];
                    isPrint[i++][j]=true;
                }else{
                    break;
                }
            }
            i--;
            j--;
            //左
            while(j>=0){
                if(isPrint[i][j]!=true){
                    nums[t++]=matrix[i][j];
                    isPrint[i][j--]=true;
                }else{
                    break;
                }
            }
            j++;
            i--;
            //上
            while(i>=0){
                if(isPrint[i][j]!=true){
                    nums[t++]=matrix[i][j];
                    isPrint[i--][j]=true;
                }else{
                    break;
                }
            }
            i++;
            j++;
        }
        return nums;
    }
}

共勉
请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值