邮递员送信(1)子陵OJ P1993

问题传送门

【问题描述】
   有一个邮递员要送东西,邮局在结点1.他总共要送n-1样东西,其目的地分别是2~n。由于这个城市的交通非常繁忙,幸好两个结点间可能有多条路连接。下面共有M条道路,通过每条道路需要一定的时间,注意道路是双向连通的。
这个邮递员每次只能带一样东西。求送完这n-1样东西并且最终回到邮局最少需要多少时间。
【输入】post.in
   输入文件第一行包含一个整数n和m
   接下来M行,每行三个正整数u,v,w,表示该条道路是从U到V的。且通过这条道路需要W的时间。满足1<=u,v<=n,1<=w<=10000,输入保证任意两点都能互相到达。
【输出】post.out
一个整数表示最少需要的时间。
【输入输出样例 1】
3 3
1 2 10
1 3 20
2 3 5
【输入输出样例 2】
5 6
1 2 10
2 3 20
3 4 10
4 5 8
2 5 9
3 1 8
【输入输出样例 1】
50
【输入输出样例 2】
110
【样例解释1】
从1到2的最短路径是10,回来也是10,时间花费10+10=20
从1到3的最短路径是15,回来也是15,时间花费15+15=30
送两个邮件一共花费的时间20+30=50
【样例解释2】
从1到2的最短路径是10,回来也是10,时间花费10+10=20
从1到3的最短路径是8,回来也是8,时间花费8+8=16
从1到4的最短路径是18,回来也是18,时间花费18+18=36
从1到5的最短路径是19,回来也是19,时间花费19+19=38
总共20+16+36+38=110
【数据范围】
对于30%的数据, 目的地数量n<=20
对于50%的数据,目的地数量n<=100
对于100%的数据,目的地数量n<=1000 ,1<=m<=1000000,1<=w<=10000

题意传送门

最短路径
**说倒最短路径,马上会想到的是Bullman_ford,显然啊,O(N^3)=O(1000*1000*1000)会光荣壮烈,
只能拿到那可怜的50’,
当然,为了那更多的分,有的人知道一种方法——dijkstra(迪杰斯特拉)O(n^2)=O(1000*1000),艰难的度过了100分,这个时候,一个伟大的算法(虽然有点Bug)产生了——Spfa。很多时候,给定的图存在负权边,这时类似Dijkstra算法等便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了。简洁起见,我们约定加权有向图G不存在负权回路,即最短路径一定存在。如果某个点进入队列的次数超过N次则存在负环(SPFA无法处理带负环的图)。当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重点。我们用数组d记录每个结点的最短路径估计值,而且用邻接表来存储图G。我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止。
定理:只要最短路径存在,上述SPFA算法必定能求出最小值。证明:每次将点放入队尾,都是经过松弛操作达到的。换言之,每次的优化将会有某个点v的最短路径估计值d[v]变小。所以算法的执行会使d越来越小。由于我们假定图中不存在负权回路,所以每个结点都有最短路径值。因此,算法不会无限执行下去,随着d值的逐渐变小,直到到达最短路径值时,算法结束,这时的最短路径估计值就是对应结点的最短路径值。
期望时间复杂度:O(me), 其中m为所有顶点进队的平均次数,可以证明m一般小于等于2n:“算法编程后实际运算情况表明m一般没有超过2n.事实上顶点入队次数m是一个不容易事先分析出来的数,但它确是一个随图的不同而略有不同的常数.所谓常数,就是与e无关,与n也无关,仅与边的权值分布有关.一旦图确定,权值确定,原点确定,m就是一个确定的常数.所以SPFA算法复杂度为O(e).证毕.”(SPFA的论文)不过,这个证明是非常不严谨甚至错误的,事实上在bellman算法的论文中已有这方面的内容,所以国际上一般不承认SPFA算法。
对SPFA的一个很直观的理解就是由无权图的BFS转化而来。在无权图中,BFS首先到达的顶点所经历的路径一定是最短路(也就是经过的最少顶点数),所以此时利用数组记录节点访问可以使每个顶点只进队一次,但在带权图中,最先到达的顶点所计算出来的路径不一定是最短路。一个解决方法是放弃数组,此时所需时间自然就是指数级的,所以我们不能放弃数组,而是在处理一个已经在队列中且当前所得的路径比原来更好的顶点时,直接更新最优解。
SPFA算法有两个优化策略SLF和LLL——SLF:Small Label First 策略,设要加入的节点是j,队首元素为i,若dist(j)小于dist(i),则将j插入队首,否则插入队尾; LLL:Large Label Last 策略,设队首元素为i,队列中所有dist值的平均值为x,若dist(i)>x则将i插入到队尾,查找下一元素,直到找到某一i使得dist(i)<=x,则将i出队进行松弛操作。 SLF 可使速度提高 15 ~ 20%;SLF + LLL 可提高约 50%。 在实际的应用中SPFA的算法时间效率不是很稳定,为了避免最坏情况的出现,通常使用效率更加稳定的Dijkstra算法。
当然,尽管Spfa会退化,但是在解这题的时候,也并不会比Dijkstra算法来的慢。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值