道路游戏

这是一篇关于解决电脑游戏策略的博客,游戏涉及环形马路和机器人的金币收集。玩家需要通过动态规划确定最佳购买机器人的时间和行走次数,以在限定时间内最大化收集到的金币,扣除购买机器人的成本后得出最大收益。博客通过样例解释了问题,并提出了动态规划的解决方案,利用单调队列优化算法以避免超时。
摘要由CSDN通过智能技术生成

题目描述

小新正在玩一个简单的电脑游戏。
游戏中有一条环形马路,马路上有 n 个机器人工厂,两个相邻机器人工厂之间由一小段 马路连接。小新以某个机器人工厂为起点,按顺时针顺序依次将这 n 个机器人工厂编号为 1~n,因为马路是环形的,所以第 n 个机器人工厂和第 1 个机器人工厂是由一段马路连接在 一起的。小新将连接机器人工厂的这 n 段马路也编号为 1~n,并规定第 i 段马路连接第 i 个 机器人工厂和第 i+1 个机器人工厂(1 ≤ i ≤ n-1),第 n 段马路连接第 n 个机器人工厂和第 1 个机器人工厂。

游戏过程中,每个单位时间内,每段马路上都会出现一些金币,金币的数量会随着时间 发生变化,即不同单位时间内同一段马路上出现的金币数量可能是不同的。小新需要机器人 的帮助才能收集到马路上的金币。所需的机器人必须在机器人工厂用一些金币来购买,机器 人一旦被购买,便会沿着环形马路按顺时针方向一直行走,在每个单位时间内行走一次,即 从当前所在的机器人工厂到达相邻的下一个机器人工厂,并将经过的马路上的所有金币收集 给小新,例如,小新在 i(1 ≤ i ≤ n)号机器人工厂购买了一个机器人,这个机器人会从 i 号 机器人工厂开始,顺时针在马路上行走,第一次行走会经过 i 号马路,到达 i+1 号机器人工 厂(如果 i=n,机器人会到达第 1 个机器人工厂),并将 i 号马路上的所有金币收集给小新。

游戏中,环形马路上不能同时存在 2 个或者 2 个以上的机器人,并且每个机器人最多能 够在环形马路上行走 p 次。小新购买机器人的同时,需要给这个机器人设定行走次数,行走 次数可以为 1~p 之间的任意整数。当马路上的机器人行走完规定的次数之后会自动消失,小 新必须立刻在任意一个机器人工厂中购买一个新的机器人,并给新的机器人设定新的行走次 数。

以下是游戏的一些补充说明:

游戏从小新第一次购买机器人开始计时。
购买机器人和设定机器人的行走次数是瞬间完成的,不需要花费时间。
购买机器人和机器人行走是两个独立的过程,机器人行走时不能购买机器人,购买 完机器人并且设定机器人行走次数之后机器人才能行走。
在同一个机器人工厂购买机器人的花费是相同的,但是在不同机器人工厂购买机器 人的花费不一定相同。购买机器人花费的金币,在游戏结束时再从小新收集的金币中扣除,所以在游戏过 程中小新不用担心因金币不足,无法购买机器人而导致游戏无法进行。也因为如此, 游戏结束后,收集的金币数量可能为负。
现在已知每段马路上每个单位时间内出现的金币数量和在每个机器人工厂购买机器人 需要的花费,请你告诉小新,经过 m 个单位时间后,扣除购买机器人的花费,小新最多能 收集到多少金币。

输入

第一行 3 个正整数,n,m,p,意义如题目所述。
接下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值