目录
一,二叉堆
二叉堆是用数组实现的完全二叉树,也就是说物理结构是数组,逻辑结构是完全二叉树。
二叉堆分2种,最大堆和最小堆。
最大堆指的是,任何一个结点都比它的两个子结点(或1个或0个)要大,最小堆同理。
本文以最大堆为例进行展示。
二,堆的调整
堆的调整指的是,给出一个完全二叉树,除了根结点之外,左子树是二叉堆,右子树是二叉堆,现在要调整元素位置,让整个树成为二叉堆。
其实就是把堆顶元素不停的往下塞,塞到合适的位置就停止了。
实现代码:
template<typename T>
bool cmp(T a, T b)
{
return a < b; //最大堆
}
template<typename T>
void exchange(T* a, T* b)
{
T tmp = *a;
*a = *b;
*b = tmp;
}
int LeftChild(int id)
{
return id * 2 + 1;
}
int RightChild(int id)
{
return id * 2 + 2;
}
int Parent(int id)
{
return (id - 1) / 2;
}
template<typename T>
void AdjustHeap(T* arr, int rootId, int size)
{
int largest = rootId, left = LeftChild(rootId), right = RightChild(rootId);
if (left < size && cmp(arr[largest], arr[left]))largest = left;
if (right < size && cmp(arr[largest], arr[right]))largest = right;
if (largest == rootId)return;
exchange(arr + rootId, arr + largest);
AdjustHeap(arr, largest, size);
}
时间复杂度:O(h),其中h是二叉堆的高度,h=Θ(log n),其中n=size,表示所有结点数目
PS:如果要最小堆,只需要改cmp函数即可,其他(包括下文)所有代码都不用改。
三,堆的创建
给出一个数组,现在要交换元素位置,使得它变成一颗二叉堆。
实现代码:
template<typename T>
void InitHeap(T* arr, int size)
{
for (int i = size / 2; i >= 0; i--)AdjustHeap(arr, i, size);
}
原理:因为是完全二叉树,所以最后一层的结点数目小于总数的一半,也就是说,从size/2到0覆盖了除掉最后一层之外的所有结点。
时间复杂度:Θ(n),其中n=size,表示所有结点数目
四,堆排序
算法思路:
先构建二叉堆,于是数组第一个元素就是最大元素,把它和最后一个元素交换,
对于剩下的n-1个元素,直接调用AdjustHeap即可再次变成堆,于是得到了这n-1个元素里面的最大值,
依次类推,最后就变成增序的数组了。
template<typename T>
void HeapSort(T* arr, int size)
{
InitHeap(arr, size);
for (int i = size - 1; i > 0; i--) {
exchange(arr + i, arr);
AdjustHeap(arr, 0, i);
}
}
时间复杂度:O(n log n)
五,堆元素更新
template<typename T>
void HeapIncrese(T* arr, int size, int id, T newValue)
{
arr[id] = newValue;
while (id > 0 && cmp(arr[Parent(id)], arr[id])) {
exchange(arr + id, arr + Parent(id));
id = Parent(id);
}
}
template<typename T>
void HeapDecrese(T* arr, int size, int id, T newValue)
{
arr[id] = newValue;
AdjustHeap(arr, id, size);
}
template<typename T>
void HeapChange(T* arr, int size, int id, T newValue)
{
if (cmp(arr[id], newValue))HeapIncrese(arr, size, id, newValue);
else HeapDecrese(arr, size, id, newValue);
}
六,堆的插入和删除
template<typename T>
void HeapInsert(T* arr, int &size, T value)
{
HeapIncrese(arr, size + 1, size, value);
size++;
}
template<typename T>
void HeapDelete(T* arr, int &size, T value)
{
for (int i = 0; i < size; i++) {
if (arr[i] == value) {
HeapChange(arr, size - 1, i, arr[size - 1]);
size--;
break;
}
}
}
七,堆的按层打印
template<typename T>
void HeapPrint(T* arr, int size)
{
int mi = 2;
for (int i = 0; i < size; i++) {
cout << arr[i];
if (i == mi - 2 || i == size - 1) {
cout << endl;
mi *= 2;
}
else cout << " ";
}
cout << endl;
}
八,操作测试
int arr[100000];
int main()
{
int n, m;
cin >> n >> m;
for (int i = 0; i < n; i++)cin >> arr[i];
InitHeap(arr, n);
string opt;
int num;
while (cin >> opt >> num) {
if (opt == "add") {
HeapInsert(arr, n, num);
}
else {
HeapDelete(arr, n, num);
}
HeapPrint(arr, n);
}
return 0;
}
输入:
5 4 1 2 3 4 5 add 6 delete 3 delete 2 add 2
输出:
1
2 3
4 5 6
1
2 6
4 5
1
4 6
5
1
2 6
5 4