自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(371)
  • 收藏
  • 关注

原创 四、深度图像先验(Deep Image Prior)

图片先验” 就像是我们在看图或者画图时,脑子里自带的一些 “常识”。比如,给你一张非常模糊的人脸照片(左图),让你把它画得更清楚些。你怎么画呢?你知道人脸大概有两只眼睛、一个鼻子、一张嘴。你知道眼睛通常在脸的上半部分,鼻子在中间,嘴巴在下边。你知道头发长在头顶上,耳朵在两边。这些你脑子里本来就有的、关于人脸长啥样的知识,就是你的 “人脸先验知识”。所以,“图片先验” 就是这种我们事先知道的、关于 “正常图片应该是什么样” 的普遍规律和常识。

2025-06-23 10:21:06 786

转载 三、多任务学习

对于有监督深度学习/机器学习而言,基本流程都是通过输入数据,模型根据输入数据来预测结果,训练阶段根据预测和监督信号之间的损失来修正模型的参数,让模型参数尽可能可能符合数据的分布。:针对很多数据集比较稀疏的任务,比如短视频转发,大部分人看了一个短视频是不会进行转发这个操作的,这么稀疏的行为,模型是很难学好的(过拟合问题严重),那我们把预测用户是否转发这个稀疏的事情和用户是否点击观看这个经常发生事情放在一起学,一定程度上会缓解模型的过拟合,提高了模型的泛化能力。单任务学习:一个 Loss,一个任务。

2025-06-22 22:28:59 53

原创 二、Generative adversarial network (GAN)

一开始的 Generator 的参数是随机的,所以它只能产生类似于噪声的图像,那么 Discriminator 做的就是给它一张图片,判断是 Generator 生成的,还是像是真实的图片。其实这个是一个拟人化的手法,原始的 GAN 的 Paper 里面举出的例子是做假钞和警察的故事,警察就是 Discriminator,他判断是真钞还是假钞。如下图所示,在第一张数字 2 的图片中,数字 2 的尾巴有一个点,如果我们将其补充完整变成第二张数字 2 的图片,它仍然像是人手写的数字。那么有什么好的办法吗?

2025-06-22 13:29:55 632 1

原创 一、什么是生成式人工智能

机器学习是一种手段,它跟生成式人工智能的关系其实是有交集的部分,也有各自独立的部分。生成式人工智能可以用机器学习来解,也可以用非机器学习的方法解,例如基于规则或模板的方法(例如,在生成天气预报文本时,可以根据预设的规则来组合句子。它将这个句子视为一个未完成的句子,它在后面预测接哪一个字是合理的,比如接 “珠” 是合理的。当测试的时候肯定会遇到过训练数据中没有的数据,那么生成式 AI 就需要创造全新的文句,也就是需要有创造力。原本我们做生成式的时候觉得是一个很难的问题,因为一段文字的可能性是无法穷举的。

2025-06-21 23:39:42 1143 1

转载 3-在 Jupyter Notebook 中使用 conda 虚拟环境

【最全指南】如何在 Jupyter Notebook 中切换/使用 conda 虚拟环境?

2025-06-20 15:24:15 21

原创 2. Anaconda 的安装及 Pytorch 环境安装

参考。

2025-06-15 13:45:13 202

原创 1. NVIDIA驱动安装

我们的显卡版本是 RTX 3090。然后我们就可以去英伟达官网上去找相对应的显卡驱动。根据自己的 NVIDIA 版本选择对应的信息,如 “产品类型”、“产品系列”(如果是笔记本选择带 “notebooks”)、“产品家族” 都根据自己的版本选择即可。按(win+r),输入 cmd,点击确认(会出现命令窗口)。点击所下载好的文件双击进行安装–>点击运行–>同意并继续。打开计算机管理->设备管理器->显示适配器。然后点击查找,得到下图。

2025-06-15 13:13:40 381

原创 扩散模型(DDPM)

Diffusion Model(扩散模型)是一种深度学习算法,主要用于生成模型领域,尤其在图像生成中取得了显著的成果。这种模型的核心思想是模拟一个从有序到无序再到有序的扩散过程,通过逐步增加然后再逐步去除噪声的方式来生成数据。应用:扩散模型在多种数据生成任务中表现出色,例如图像生成、音频合成和文本生成等。在图像生成方面,扩散模型能够生成高质量、高分辨率的图像,竞争力甚至超过了其他类型的生成模型,如生成对抗网络(GANs)。

2025-05-21 20:02:06 959

原创 傅里叶变换与离散余弦变换之间的关系

DFT 是对信号进行周期扩展,DCT 是对信号进行先镜像再周期扩展,这样做的好处在于扩展的信号间实现了平滑的过度,而直接周期扩展会出现跳变,这种跳变在频域就对应着高频的分量。

2024-12-02 15:08:19 238

原创 Deepwave 声波正演和弹性波正演

Deepwave 调用 scalar 方法实现声波和弹性波正演。

2024-11-28 21:04:15 732

转载 最通俗易懂的扩散模型

那生成模型到底是个啥?假设有一批样本XXX,想要从XXX学习到它的分布pXp(X)pX,这样就能同时学习到没被采样到的数据了,用这个分布pXp(X)pX就能随意采样,然后获得生成结果。但是这个分布九转回肠,根本不可能直接获得。所以绕个弯,整一个隐变量ZZZ,这东西可以生成XXX。不妨假设ZZZ满足正态分布,那就可以先从正态分布里面随机取一个ZZZ,然后用ZZZ和XXX的关系算出pXp(X)pX。

2024-06-01 16:44:45 1424 1

原创 GEOPHYSICS 投稿须知

2018 年 1 月生效的 GEOPHYSICS 文章撰写和格式化指南已修订,并包括支持评审的新要求。

2023-12-22 16:30:00 2577 1

原创 DL-FWI 问题与技术

(Deep Reinforcement Learning):深度强化学习在地震数据处理中还处于初级阶段,但一些初步研究表明,可以使用强化学习的方法来优化全波形反演过程中的模型调整和决策。:Dropout是一种常用的正则化技术,通过在训练中以一定概率随机断开一部分神经元的连接,从而减少神经元间的依赖关系,提高模型的鲁棒性和泛化能力。:通过对训练数据进行增强,例如旋转、缩放、平移、翻转等操作来产生更多样化的数据,可以帮助模型更好地学习数据的特征,并提高泛化能力。:良好的数据预处理是保障模型泛化能力的首要步骤。

2023-09-28 10:36:55 1247

原创 陆地地震数据的全波形反演调查

页岩、砂岩和碳酸盐岩的大多数地下沉积岩的P波与S波速度比在1.6至1.9的范围内,而上部近地表的P波和S波速度比可高达10或更多。从V-V分量提取的第一到达时间的走时反演产生近地表的P波速度-深度模型,从SH-SH分量提取的第二到达时间的时程反演产生近表层的S波速度-厚度模型。因为从V-V分量拾取的第一到达时间与未被任何其它波模式污染的P波相关联,并且从SH-SH分量拾取的第二到达时间与没有被任何其它波模污染的S波相关联,近地表的估计P波和S波速度-深度模型不受与全波声学和弹性反演相关的不确定性的影响。

2023-09-26 11:00:36 942

原创 PNAS:勘探地球物理学论文

阅读题目译为《深度神经网络中用于解决勘探地球物理问题的感知先验约束》该研究提出三种可能的策略,以有效地讲地质和/或地球物理约束纳入深度神经网络(DNNs)。相关策略有助于解决应用 DNNs 求解地球物理问题时通常面临的主要挑战,如泛化性差、可解释性弱和物理不一致。)是提高模型可推广性、可解释性和物理一致性的一种潜在方法。

2023-06-12 17:23:22 2069

原创 地震勘探基础(十四)之地震反演

下图为地震反演的基本流程框图,首先要收集地震资料和测井资料,地震资料包括零相位地震数据,全部或部分叠加的地震数据,叠加速度和地震层位数据。在现在的地震勘探开发工作中,除了要进行地震构造解释以外,还要对储层的岩性,孔隙度,压力,甚至含油气性等储层参数进行预测,为圈闭评价,探井井位论证,油气藏描述和开发方案编制提供依据。地震反演方法很多,不同的地震反演方法具有不同的技术特点及使用条件,如何针对研究工区的具体情况选择合适的反演方法。(1) 确定性反演:地震递推反演,基于模型地震反演,弹性阻抗反演,叠前同时反演。

2023-06-07 16:58:39 8424 3

原创 地震勘探基础(十三)之地震资料解释

20世纪80年代末开始,随着地震资料质量的进一步提高,可以利用地震资料进行岩性解释,采用各种有效的地震技术,比如地震资料的各种分析及特殊处理方法,提取一系列的属性参数,并综合利用地质,钻井,测井资料,预测特定地层的岩性,厚度,孔隙度,流体性质等等,甚至对烃类进行检测,比如亮点,暗点,AVO等。地震储层预测,地震岩石物理分析,地震定量解释等新的方法和技术都是在该阶段提出的。根据地震资料所解决的地质问题的不同,地震资料解释也有其它的说法,如地震资料构造解释,地震资料地层解释,地震资料岩性解释等等。

2023-06-07 16:07:35 6014 2

原创 地震勘探基础(十二)之地震偏移处理

叠后偏移是在水平叠加剖面上进行的,它是建立在水平层状介质,横向速度不变化的假设之上,对水平层状地层的地区,有较好的效果。叠前偏移是在共中心点道集上进行的。在地震勘探工作中,把地震波在传播过程中遇到地层剧烈变化的地方,如断层的断点,断棱,地层尖灭点,不均匀体,侵入体和地下礁的边缘所引起的波称为绕射波。为了适应地下各种复杂的地质条件,人们将数学、物理等领域的成果应用到地震资料处理中,研究出许多地震资料处理方法,出现了许多不同的地震偏移的说法,比如二维偏移,三维偏移,叠后偏移,叠前偏移,时间偏移,深度偏移等等。

2023-06-07 11:03:06 8745 5

原创 地震勘探基础(十一)之水平叠加处理

在地下构造复杂,速度横向变化剧烈的情况下,反射波的时距曲线本身不是双曲线,特别是在三维地震勘探中,反射波的旅行时还与炮检方位角有关,因此,无论采用什么动校正速度,可能都不能把时距曲线校成直线,这就会严重影响水平叠加的效果和成像的精度。另外,地层倾角对于叠加效果也有影响,当地层倾斜时,如果我们仍然按照水平界面情况下,多次覆盖观测系统进行观测,能满足共中心点(CMP),但是不能满足共深度点(CDP)和共反射点(CRP)。的增加,通放带变窄,变陡,压制带向左移,有利于压制与一次波速度相近的多次波干扰波。

2023-06-06 20:56:00 4967

原创 地震勘探基础(十)之地震速度关系

在一般情况下,包括在水平界面均匀介质,倾斜界面均匀介质,覆盖层为层状介质或者是连续介质的情况下,都可以将共中心点反射波时距曲线近似看成双曲线。均方根速度可以解释为各层的速度值的平方按时间取其加权平均值,而后取平方根值。平均速度和均方根速度都是把层状介质看成某种假想的均匀介质,因此对于某一种介质结构,只有一个均方根速度和平均速度。地震速度分析可以求得地震叠加速度,进而可以求取均方根速度,层速度和平均速度。在倾斜平行多层情况下,叠加速度就是等效的均方根速度,也就是均方根速度除以倾斜界面倾角的余弦。

2023-06-06 17:35:46 5496

原创 地震勘探基础(九)之地震速度分析

对于M个试验速度,就可以得到M个校正后的道集,将它们按照速度大小排列,校正后的各个道集同相轴校直的速度就是。变化的一系列速度谱线。下图显示了某地区剩余静校正前的速度谱,动校正后的道集和叠加剖面由于存在剩余静校正,动校正后道集的分辨率不高,导致叠加剖面横向断断续续。在地下界面时倾斜的情况下,除了要进行 NMO 校正外,还要进行 DMO (倾角)校正,在DMO校正后的速度谱要比校正前的分辨率高很多。如果只用大炮检距的资料进行速度谱分析,浅层的速度完全拾取不到,大小炮检距都用的情况下,速度分析效果较佳。

2023-06-05 17:53:15 5426

原创 地震勘探基础(八)之地震动校正

对于任意一道地震记录来说,深浅层反射波的动校正量不同,浅层波组的动校正量大于深层波组的动校正量,这就是动校正中“动”的含义。因此,倾斜界面情况下,NMO 校正后反射波的时距曲线是校不直的,如果再进行一次倾角时差校正 (DMO),反射波时距曲线就可以进行水平叠加。如下图所示,实际的共中心点道集动校正前是一系列的双曲线,动校正后双曲线被拉平,但是浅层的记录被严重拉伸畸变,而且畸变后的地震波频率变低。在水平层状地层情况下,共中心点反射波的时距曲线仍然是双曲线,该方程和一个水平界面情况下的形式是一样的,只是速度。

2023-06-05 16:37:42 4502

原创 地震勘探基础(七)之地震静校正

由于低速带的速度和厚度在横向上的变化,使得野外近地表参数的测量不准确或者无法测量,因此野外静校正后,激发点和接收点的静校正量还残存着正和负的误差,称为剩余静校正量。当今地震勘探的野外作业条件越来越复杂,地表一致性的假设条件受到严重的挑战,20世纪90年代后期,人们研究出了波动方程基准面校正,模型约束初至反演静校正和层析反演静校正等非地表一致性静校正技术。的,所以称之为“静”校正。如果海底崎岖,海底下存在风化层和隐蔽的河道,除了进行空气枪和拖缆的静校正外,还要进行崎岖海底和海底低俗层的校正。

2023-06-05 11:53:10 4672

原创 地震勘探基础(六)之地震反褶积

震源激发的尖脉冲实际上经历了震源响应,震源组合响应,震源鬼波,海底多次波,吸收衰减,层间多次波,地层间波阻抗差异间的反射系数,接收点的鬼波,检波器组合等作用,变成了一个具有一定时间连续的地震子波。由炸药爆炸等震源产生的一个尖脉冲在地下介质中传播,经过反射界面反射回地面,理想的地震记录如果是一系列尖脉冲,每一个尖脉冲对应一个反射界面,我们就能够准确的确定地层的界面,所以地震记录。反褶积方法以来的反射地震记录的褶积模型也不完全可靠,因为该模型中的地震子波为大地滤波器的脉冲响应,而大地滤波的作用十分复杂。

2023-06-04 17:43:08 6061 5

原创 地震勘探基础(五)之地震资料数字处理

域滤波,匹配滤波,中值滤波,相干滤波,反假频滤波等等。模拟滤波器是物理可实现的,满足因果率,在输入以前不能有输出,而数字滤波器则不完全是,比如零相位滤波器则是物理不可实现的。地震野外采集的数据是以炮集的形式记录,共炮点的地震记录很不直观,与地下地质构造形态关系不明显,不能方便反应地质构造形态和特征,更不能反映岩性储层等方面的变化。还有一种二维滤波为相干滤波,它是利用相邻地震道有效信号的相干性增强有效信号或者利用相邻地震道噪声的不相干性衰减噪声的一种滤波方法,是一种多道滤波方法。视速度等于频率与视波数之比。

2023-06-04 16:13:35 9250 1

原创 地震勘探基础(四)之地震干扰波

规则干扰波具有一定的频率,波长或视速度等特征,能在地震记录上以一定同相轴出现的干扰波,比如声波、面波、折射波、多次波,侧面波,工业干扰等等。在共炮点地震记录上,声波干扰具有以下特点:速度稳定在 340m/s,在地震记录上形成尖锐,强的初至波,频率高达100Hz,延续时间长,呈窄带状出现,时距曲线为直线。在反射波地震勘探中,面波是常见的干扰波,最常见的是瑞利面波(地滚波),沿着波的传播方向,质点振动呈现逆时针椭圆方向运动。多次波根据特点可分为全程多次波,短程多次波,微曲多次波(层间多次波),虚反射(伪波)。

2023-06-02 10:52:46 3904

原创 地震勘探基础(三)之地震波的时距曲线

假设地下介质是均匀各向同性的,一点激发多道接收,而且激发点和多个接收点的连线在一条直线上,则共炮点的直达波的传播时间就是炮间距x除以传播速度v。如下图所示,假设有一个直立断层,断点R在地面的投影为R’,R’到激发点O的距离为L,O点激发的地震波入射到R点,除了产生反射波还会产生绕射波。从下图可知,折射波和直达波是相交的,利用该交点,可以求出折射界面的埋藏深度,也可以证明折射波和反射波时距曲线是相切的。从O点激发的地震波在R点反射后,在S点接收到的传播时间和倾斜界面情况下共炮点反射波时距曲线是一样的公式。

2023-06-01 19:59:34 7831 1

原创 地震勘探基础(二)之地震分辨率

由于B层较厚,子波2开始的时候子波1已经结束了,地震波基本没有干涉,厚层的时间厚度完全大于子波的延续长度,那么B层的顶底是可以分辨的。综上,子波的延续长度越小,越尖锐,纵向分辨率越高。有一个比较公认的地震纵向分辨率的极限是地震纵向可以分辨四分之一波长的地层,由于波长等于速度除以主频,因此,提高主频可以提高纵向分辨率。如果地层B的时间厚度等于0.9倍的子波延续长度,子波1没有完全结束前,子波2已经开始振动,那么会有一些波的干涉,B层的顶底可以分辨。测井的纵向分辨率>地震勘探,露头剖面的分辨率高于测井。

2023-06-01 15:35:28 4127

原创 地震勘探基础(一)之地震波

根据地震子波的相位不同可分为:最小相位子波(子波能量集中在前部),混合相位子波(子波能量最大集中在中部),最大相位子波(子波能量集中在尾部,实际勘探中观测不到)和零相位子波(是一种特殊的混合相位子波,对称于时间原点,相位谱为零,实际勘探中观测不到)。莫霍洛维奇面 (莫霍面):在地下33km处,纵波速度从6.8km/s增加到8.1km/s,横波速度由3.9km/s增加到4.5km/s,该界面称为莫霍面,是地壳的下界面。在地震反褶积处理和地震叠前和叠后的反演中,也需要从实际观测的地震资料中提取地震子波。

2023-06-01 11:42:54 10211 3

原创 Deformable Convolution 可变形卷积

可变形卷积

2022-10-14 21:37:59 5949 6

原创 多任务学习

多任务学习

2022-10-14 21:07:33 5067

原创 数学建模之论文

论文篇

2022-09-03 11:09:43 3397

原创 数据建模之查文献找数据以及数据预处理

查文献找数据

2022-09-03 09:55:19 795

原创 数学建模之预测和评价类

数学建模预测和评价类

2022-09-02 16:28:24 2203

原创 数学建模 (一)赛前准备

华为专项题、大数据题、优化分析题、评价类题。一个建模 + 一个码代码 + 一个写论文。写论文:照着模板写就行。

2022-09-02 14:19:25 1220

转载 Majorization-Minimization优化框架

Majorization-Minimization优化框架在各类算法中是很常见的,而且这个思想其实也很容易理解,简单点说,只需文献【1】中的三页PPT即可:目标函数 J(x)J(x)J(x) 比较难优化的时候,我们往往寻找另外一个更容易优化的目标函数 G(x)G(x)G(x),当 G(x)G(x)G(x) 满足一定条件时,G(x)G(x)G(x) 的最优解能够无限逼近 J(x)J(x)J(x) 的最优解,这就是 MM 思想。G(x)G(x)G(x) 应该满足的三个条件: - 易优化 - Gk(x

2022-03-13 14:26:35 1759

转载 软阈值(Soft Thresholding)函数

1. 软阈值(Soft Thresholding)函数的作用  软阈值(Soft Thresholding)可以求解如下优化问题:      arg min⁡x∥X−B∥22+λ∥x∥1\argmin_x \| X - B\|_2^2 + \lambda\| x\|_1xargmin​∥X−B∥22​+λ∥x∥1​  其中:      X=[x1,x2,…,xN]TX = [x_1, x_2, \dots, x_N]^TX=[x1​,x2​,…,xN​]T      B=[b1,b2,…,bN]

2022-03-13 10:33:29 7661

原创 地震数据插值之深度学习方法

支持向量回归Jia, Y., and J. Ma, 2017, What can machine learning do for seismic data processing? An interpolation application: Geophysics, 82, no. 3, V163–V177, doi: 10.1190/geo2016-0300.1. (SVR 方法从训练数据中挖掘出一个连续回归超平面,该超平面指示具有缺失轨迹的输入数据与输出完整数据之间的隐藏关系,然后使用学习的超平面.

2022-02-25 12:30:25 2127

转载 常见的地震插值方法

说在前面  在地震数据处理中,地震道缺失和空间采样不足是常见的,其表现为死道,或由于含有强烈的噪声而在预处理过程中被剔除的道记录,此外,由于野外采集时排列范围有限也会产生此类问题。  在地震数据处理中,除因数据缺失而直接丢失一部分信息外,还可能导致在后续处理流程中产生噪声,使得地震道中出现形态各异的脉冲。这样,基于多道处理算法的处理过程将受到缺失道的影响,其中受影响最严重的包括波动方程偏移,基于波动方程的抑制表面多次波的方法,与地表有关的多次波的消除和谱估计等处理过程。  道内插是地震资料常规处理中不

2022-02-05 21:45:22 2170

原创 3-事务并发调度

1. 事务并发(1) 概念:在某一个时间段内,多个事务同时存取相同的数据库数据。(2) 并发操作时由于不能隔离而产生的问题:丢失修改:A修改无效。读入的数据时脏数据不可重复读2. 并发调度简单来说就是并发的事务的命令按照时间顺序组成的一个执行序列,叫做并发调度。(1) 串行调度:按照串行的方式执行的。效率较低,一个事务执行必须等到另一个事务结束。(2) 一致性调度:调度如果执行,能够让数据库从一个正确的状态(一致性)装换成另一个一致性的状态。一致性状态:事务在执行的

2021-11-28 21:48:52 3190 3

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除