大学生数学竞赛(高数篇)

大学生数学竞赛,不是数学建模,分为数学组和非数学组,我是非数学组。

全国初赛只考高数,全国总决赛考高数和线性代数。当年我是我们学校唯一 一个进入全国总决赛的,非数学组就我一个,数学组全军覆没。

下面贴一下我当年的笔记和习题:

目录

一,知识点

1,达布定理

2,达布定理的推论

3,施笃兹定理(Stolz)

4,导数公式

5,泰勒展开公式

6,柯西不等式

7,积分中值定理

二,极限题

1,施笃兹定理

2,其他极限题

三,罗尔定理、中值定理、达布定理

1,罗尔定理

2,微分中植定理

3,柯西中值定理

4,积分中值定理

5,达布定理

四,积分

1,定积分

2,二重积分

3,积分上限函数

五,微分方程

1,普通微分方程

2,特殊微分方程

六,导数相关

七,易错题

八,难题

九,解题技巧

1,逐项求导法(生成函数法)

2,交换求和顺序法

3,特殊的极坐标用法

4,定义法

5,其他特殊方法

十,反常规题

十一,其他题目


一,知识点

1,达布定理

若f在[a,b]上可导,f_+^{'}(a)\neq f_-^{'}(b),则对f_+^{'}(a)f_-^{'}(b) 之间的任意数k,都有 \exists \varepsilon \in (a,b), \, f^{'}(\varepsilon)=k

2,达布定理的推论

若f在区间I上满足导数不为0恒成立,则f在I上严格单调

3,施笃兹定理(Stolz)

​若数列{bi}递增无上界,\lim_{n\rightarrow \infty }\frac{a_n-a_{n-1}}{b_n-b_{n-1}} 存在或者为正负无穷

\lim_{n\rightarrow \infty }\frac{a_n}{b_n}=\lim_{n\rightarrow \infty }\frac{a_n-a_{n-1}}{b_n-b_{n-1}}

4,导数公式

(\sin x)^{(n)}=\sin \left(x+n \cdot \frac{\pi}{2}\right) \: \: \: \: \: \: (\cos x)^{(n)}=\cos \left(x+n \cdot \frac{\pi}{2}\right)    

5,泰勒展开公式

e^{x}=1+x+\frac{x^{2}}{2 !}+\frac{x 3}{3 !}+\cdots

\sin x=x-\frac{x^3}{3 !}+\frac{x^{3}}{5 !}-\frac{x^{7}}{7 !} +\cdots\\ \cos x=1-\frac{x^2}{2 !}+\frac{x^{4}}{4 !}-\frac{x^{6}}{6 !}+\cdots

\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots\\ \ln (1-x)=-\left(x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots\right)

6,柯西不等式

设f(x), g(x)在区间[a,b]上连续, 则    \left(\int_{a}^{b} f^{2}(x) d x\right)\left(\int_{a}^{b} g^{2}(x) d x\right) \geqslant\left(\int_{a}^{b} f(x) g(x) d x\right)^{2}

7,积分中值定理

设f(x)在区间[a,b]上可连续, g(x)在区间[a,b]上可积且不变号,则

\exists \varepsilon \in[a, b], \int _a^b f(x) g(x) d x=f(\varepsilon) \int _a^b g(x)dx

二,极限题

1,施笃兹定理

(1)X_{1} \in(0,1), \quad X_{n+1}=X_{n}\left(1-X_{n}\right) \quad prove \lim _{n \rightarrow \infty} n X_{n}=1
证明:   if \: 0<X_{n}<1, \, then\: \: 0<X_{n+1}=X_{n}\left(1-X_{n}\right)<1

\therefore \forall{n}, \,0<X_{n}<1, \quad and \left\{X_{n}\right\}  递减
\therefore \lim _{n \rightarrow \infty} X_{n}=c

\therefore c=c(1-c) ,so\: c=0
as \: \frac{1}{X_{n+1}}=\frac{1}{X_{n}}+\frac{1}{1-X_{n}}
\therefore \lim _{n \rightarrow \infty} \frac{1}{n X_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{X_{n+1}}-\frac1{X_n}}{n+1-n}=\lim _{n \rightarrow \infty}\frac{1}{1-X_{n}}=1 
\therefore\lim_{n \rightarrow \infty}n X_{n}=1

(2)a_{0}=0,\, a_{1}=1+\sin (-1), \quad a_{n}=1+\sin \left(a_{n-1}-1\right), \quad solve\quad _{n \rightarrow \infty}^{\lim } \frac{1}{n} \quad \sum_{k=1}^{n} a_{k}

解:   let\: b_{n}=a_{n}-1\: then\: b_{n}=\sin b_{n-1}
\therefore\left|b_{n}\right|=\left|\sin b_{n-1}\right| \leq\left|b_{n-1}\right|\\ \therefore \quad \lim _{n \rightarrow \infty} b_{n}=c\\ \therefore c=\sin c \: so\: c=0
\therefore \lim _{n \rightarrow \infty} a_{n}=1
\therefore \quad _{n \rightarrow \infty}^{\lim } \frac{1}{n} \quad \sum_{k=1}^{n} a_{k}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{n+1-n}=1   

2,其他极限题

(1)x_n=sin\,x_{n-1},证明n \to \infty时,x_n\sim \sqrt\frac{3}{n}

(2){ b }_{n}=\sum_{k=0}^{n} \frac{1}{C_{n}^{k}} { \quad solve\quad }_{n \rightarrow \infty}^{l i m} b_{n}

解:  b_{n}=\frac{\sum_{k=0}^{n} k !(n-k)!}{n!}
\therefore(n+2) b_{n}=\frac{\sum_{k=0}^{n} k !(n-k) !(n+1-k+k+1)}{n !}\\ =\frac{\sum_{k=0}^{n} k !(n+1-k) !+\sum_{k=0}^{n} (k+1) !(n-k) !}{n !}\\ =\frac{\sum_{k=0}^{n} k !(n+1-k) !+\sum_{k=0}^{n+1} k !(n+1-k) !-(n+1) !}{n !}\\ =\frac{2 \sum_{k=0}^{n+1} k !(n+1-k) !-2(n+1) !}{n !}\\ =2(n+1) b_{n+1}-2(n+1)

\therefore \: b_{n+1}=\frac{(n+2) b_{n}}{2(n+1)}+1

if\: 2<b_{n}<2+\frac{6}{n}, \quad n>2

then\: b_{n+1}<\frac{n+2}{2(n+1)}\left(2+\frac{6}{n}\right)+1=2+\frac{1}{n+1}+\frac{3(n+2)}{n(n+1)} \\ \quad \leq 2+\frac{1}{n+1}+\frac{5}{n+1}=2+\frac{6}{n+1} \\ b_{n+1}>\frac{n+2}{n+1}+1>2 \\ then\: 2<b_{n+1}<\frac{6}{n+1}

as \: 2<b_{3}=\frac{8}{3}<4 \\ \therefore 2<b_{n}<2+\frac{6}{n} (n>2) \\ \therefore \lim _{n \rightarrow \infty} b_{n}=2

(3)a_{1}=\sqrt{\frac{1}{2}} \,,\,a_{n}=\sqrt{\frac{1+a_{n-1}}{2}} \,,\,solve\: \: \lim _{n \rightarrow \infty} a_{1} a_{2} \cdots a_{n}
证明:  a_{1}=\frac{\sqrt{2}}{2}=\cos \frac{\pi}{4},\, a_{n-1}=2 a_{n}^{2}-1, \: like\: \cos 2 \theta=2 \cos^2 \theta-1
if\, a_{n-1}=\cos \frac{\pi}{2^{n}} ,\: then\: a_{n}=\cos \frac{\pi}{2^{n+1}}
\therefore \forall{n}, a_{n}=\cos \frac{\pi}{2^{n+1}}\\ \therefore a_{1} a_{2} \cdots a_{n}=\cos \frac{\pi}{2^{2}} \cos \frac{\pi}{2^{3}} \cdots \cos \frac{\pi}{2^{n+1}}=\frac{1}{2^{n} \sin \frac{\pi}{2^{n+1}}}\\ \therefore \lim _{n \rightarrow \infty} a_{1} a_{2} \cdots a_{n}=\frac{2}{\pi}

(4)a_{1}>0, b_{1}>0, c_{1}>0, a_{1}+b_{1}+c_{1}=1,  a_{n+1}=a_{n}^{2}+2 b_{n} c_{n}, b_{n+1}=b_{n}^{2}+2 a_{n} c_{n}, c_{n+1}=c_{n}^{2}+2 a_{n} b_{n}, \quad   证明  \lim _{n \rightarrow \infty} a_{n} 存在并求它
解: a_{n+1}+b_{n+1}+c_{n+1}=\left(a_{n}+b_{n}+c_{n}\right)^{2}=1

 方法1 ( 我的方法) 
a_{n+1}{ }^{2}+b_{n+1}{ }^{2}+c_{n+1}{ }^{2}=\sum a_{n}{ }^{4}+4 a_{n} b_{n} c_{n} \sum a_{n}+4 \sum a_{n}{ }^{2} b_{n}{ }^{2}\\ =\left(a_{n}^{2}+b_{n}^{2}+c_{n}\right)^{2}+2\left(\sum a_{n}^{2} b_{n}^{2}+2 a_{n} b_{n} c_{n} \sum a_{n}\right)\\ =\left(a_{n}^{2}+b_{n}^{2}+c_{n}^{2}\right)^{2}+2\left(a_{n} b_{n}+b_{n} c_{n}+c_{n} a_{n}\right)^{2}
let\: S_{n}=a_{n}^{2}+b_{n}^{2}+c_{n}^{2} { \: then\: } \frac{1}{3} \leq S_{n}<a_{n}+b_{n}+c_{n}=1\\ \therefore S_{n+1}=S_{n}^{2}+2\left(\frac{1-S_{n}}{2}\right)^{2}=\frac{3}{2} S_{n}^{2}-S_{n}+\frac{1}{2}=S_{n}+\frac{1}{2}\left(S_{n}-1\right)\left(3 S_{n}-1\right)<S_{n}

\therefore \lim _{n \rightarrow \infty} S_{n} 存在, 设为c \left(\frac{1}{3} \leq c<1\right)

\text { then } c=\frac{3}{2} c^{2}-c+\frac{1}{2} \text { \: so } c=\frac{1}{3}\\ \therefore \lim _{n \rightarrow \infty} a_{n}^{2}+b_{n}^{2}+c_{n}^{2}=\frac{1}{3}\\

由于柯西不等式,\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} c_{n}=\frac{1}{3}
方法 2 (书上的方法) 
{ (1)let } M_{n}=\max \left\{a_{n}, b_{n}, c_{n}\right\}, m_{n}=\min \left\{a_{n}, b_{n}, c_{n}\right\}\\ \text { if } a_{n} \geq b_{n} \geq c_{n}, then\: M_{n}=a_{n}, \\ \quad m_{n}=c_{n} a_{n+1}=a_{n}^{2}+2 b_{n} c_{n}<a_{n}^{2}+a_{n} b_{n}+a_{n} c_{n}=a_{n}=M_{n}\\ b_{n+1}=b_{n}^{2}+2 a_{n} c_{n}<a_{n}^{2}+a_{n} b_{n}+a_{n} c_{n}=a_{n}=M_{n}\\ c_{n+1}=c_{n}^{2}+2 a_{n} c_{n}<a_{n} c_{n}+a_{n} b_{n}+a_{n}^{2}=a_{n}=M_{n}\\ \therefore M_{n+1}=\max \left\{a_{n+1}, b_{n+1}, c_{n+1}\right\}<M_{n}\\
同理, m_{n+1}>m_{n}
(2) M_{n+1}-m_{n+1} \leq\left(M_{n}-m_{n}\right)^{2}   (证明和上面差不多, 略)
\therefore \lim _{n \rightarrow \infty} M_{n}=\lim _{n \rightarrow \infty} m_{n}\\ \text { so } \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} c_{n}=\frac{1}{3}

(5)a_1=1,a_n=n(a_{n+1}+1),求  \lim _{n \to \infty}\coprod _{k=1}^n(1+\frac{1}{a_k})

(6)求\lim_{n\to\infty }n\,sin(2\pi en!)

(7)求证\lim_{n\rightarrow \infty }(1+n+\frac{n^2}{2!}+...+\frac{n^n}{n!})e^{-n}=1/2

(8)求\lim_{x\to\infty}\frac{tan(tanx)-sin(sinx)}{tanx-sinx}

(9)f(x)在[a,b]上连续且非负,最大值为M,求证:\lim_{n \to \infty}\sqrt[n]{\int _a^b(f(x))^ndx}=M

三,罗尔定理、中值定理、达布定理

1,罗尔定理

(1)f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0, f(1)=0,f(1/2)=1,证明\exists \varepsilon \in(0,1),\,f'(\varepsilon )=1

(2)f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0, f(1)=0,f(1/2)=1

证明:\forall \lambda,\exists\xi \in(0,1),\,f'(\xi)-\lambda(f(\xi)-\xi)=1

(3)fk可导,f(a)=f(b)=0,证明\exists\eta \in(a,b),f(\eta)+f'(\eta)=0

(4)证明:若n次实系数多项式P(x)的n个根都是实数,则它的各阶导数P'(x)、P''(x)、... P^{(n-1)}(x)都只有实根

(5)f(x)和g(x)在[a,b]上二阶可导,f(a)=f(b)=g(a)=g(b)=0,\forall x\in(a,b),\,g(x)\neq 0,\,g''(x)\neq 0

证明:\exists \xi \in(a,b),\frac{f(\xi)}{g(\xi)}=\frac{f''(\xi)}{g''(\xi)}

2,微分中植定理

(1)f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0, f(1)=1,证明:

        ①  \exists \alpha\in (0,1),\, f(\alpha )=1-\alpha    ②  \exists \varepsilon ,\eta \in(0,1),\,f'(\varepsilon )f'(\eta )=1

(2)已知f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0, f(1)=1/3,证明:\exists \varepsilon \in(0,1/2),\eta\in(1/2,1),\,f'(\varepsilon )+f'(\eta )=\varepsilon ^2+\eta ^2

(3)f(x)在[0,1]上可导,且f(0)=0, f(1)=1, \lambda_1,\lambda_2,\lambda_3>0,\,\lambda_1+\lambda_2+\lambda_3=1,证明:存在3个不同的数x_1,x_2,x_3,\,\frac{\lambda_1}{f'(x_1)}+\frac{\lambda_2}{f'(x_2)}+\frac{\lambda_3}{f'(x_3)}=1

3,柯西中值定理

(1)f(x)在[0,1]上连续,在(0,1)内可导,且f'(x)≠0,证明\exists \varepsilon ,\eta \in(a,b),\,\frac{f'(\varepsilon )}{f'(\eta )}=\frac{e^b-e^a}{b-a}e^{-\eta }

4,积分中值定理

(1)f(x)在[a,b]上有连续的导数,证明

\lim_{n\to\infty}n\left ( \int_a^bf(x)dx-\frac{b-a}{n}\sum _{k=1}^nf(a+\frac{k(b-a)}{n}) \right )=\frac{b-a}{2}(f(a)-f(b))

5,达布定理

(1)f(x)在[0,1]上可导,f(1)=2\int _0^{\frac{1}{2}}xf(x)dx,证明\exists \theta \in[0,1],f'(\theta )=-\frac{f(\theta )}{\theta }

(2)f(x)二次连续可微,\forall x,|f(x)|\leq 1,f^2(0)+(f'(0))^2=4,证明:\exists x_0,f(x_0)+f''(x_0)=0

(3)设f(x)在[0,+\infty)上可导,0\leq f(x)\leq \frac {x}{1+x^2},证明\exists\varepsilon >0,\,f'(\varepsilon )=\frac{1-\varepsilon ^2}{(1+\varepsilon ^2)^2}

四,积分

1,定积分

(1)求\lim_{n\to\infty}(\frac{1}{n+1}+\frac{1}{n+3}+...+\frac{1}{2n+1})

(2)求\lim_{n\to\infty}\sum_{j=1}^{n^2}\frac{n}{n^2+j^2}

(3)p>0,求\lim_{n\to\infty}\frac{1^p+2^p+...+n^p}{n^{p+1}}

2,二重积分

(1)f(x)=\int_x^{\sqrt x}\frac{sin\,t}{t}dt,求I=\int_0^1f(x)dx

(2)f(x)=\int_0^{x}\frac{sin\,t}{\pi-t}dt,求I=\int_0^\pi f(x)dx

3,积分上限函数

(1)f(x)在[0,1]上可导,0<=f'(x)<=1, f(0)=0, 证明(\int_0^1f(x)dx)^2\geq\int_0^1f^3(x)dx

(2)f(x)在[a,b]上连续且严格递增,证明(a,b)\int_a^bf(x)dx<2\int_a^bxf(x)dx

(3)f(x)在(0,+\infty)内连续,f(1)=\frac{5}{2}, \,\forall x,t>0,\int_1^{tx}f(u)du=t\int_1^{x}f(u)du+x\int_1^{t}f(u)du,求f(x)

(4)f(x)在 [0,\frac{\pi}{4}] 上可导且单调,\int_0^{f(x)}f^{-1}(t)dt=\int_0^xt\frac{cost-sint}{cost+sint}dt,其中f^{-1}是f的反函数,求f(x)

(5)f(x)连续,\int_0^xf(2x-t)tdt=\frac{1}{2}arctan(x^2),\,f(1)=1,求\int_1^2f(x)dx

(6)设函数f(x)在[a.b]上有连续导数,f(a)=0,证明\int_a^bf^2(x)dx\leq\frac{(b-a)^2}{2}\int_a^b(f'(x))^2dx

五,微分方程

1,普通微分方程

(1)\forall u,v,\,\frac{f(u)-f(v)}{u-v}=\alpha f'(u)+\beta f'(v),其中常数\alpha ,\beta >0,\,\alpha +\beta =1,求f(x)

(2)f(x)二次可微,f(x)+f''(x)=-xg(x)f'(x),∀x, g(x)>=0,证明|f(x)|有界

2,特殊微分方程

(1)求解y=(y')^2-xy'+\frac{x^2}{2}

(2)f''(x)+f'(x)g(x)-f(x)=0,g(x)为任意给定函数,证明:若f(a)=f(b)=0,则f(x)在[a,b]恒为0

六,导数相关

(1)求 y=arctan x 在 x=0 处的 n 阶导数

解: \left(1+x^{2}\right) y'=1
由莱布伦茨公式, n(n-1) y^{(n-1)}+2n x y^{(n)}+\left(1+x^{2}\right) y^{(n+1)}=0
so 在 x=0 处, y^{(n+1)}=-n(n-1) y^{(n-1)}
so 当 n 为偶数时, y^{(n)}{ }_{(0)}=0
当 n 为奇数时, y^{(n)}{ }_{(0)}=(-1)^{\frac{n-1}{2}} \cdot(n-1) !

(2)f(x)在[0,2]上二阶可导,∀x∈[0,2],|f(x)|<=1, |f''(x)|<=1, 证明∀x,|f'(x)|<=2

(3)f(x)在点x_0可导,a_n<x_0<b_n,\,\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=x_0,证明:\lim_{n\to\infty}\frac{f(b_n)-f(a_n)}{b_n-a_n}=f'(x_0)

(4)设f(x,y)在D:x^2+y^2\leq R^2上连续,x\frac{\partial f}{\partial x}+ky\frac{\partial f}{\partial y}=0,其中k是正整数,证明:f为常数

(5)u=f(z),z由方程z=x+yφ(z)确定,φ和f任意次可微,证明:\frac{\partial ^n u}{\partial y^n}=\frac{\partial ^{n-1}}{\partial x^{n-1}}\left ( \varphi ^n(z)\frac{\partial u}{\partial x}\right )

(6)设f(x,y)有一阶连续偏导数,且f(0,1)=f(1,0)

证明:在圆x^2+y^2=1上存在2个不同的点满足方程y\frac{\partial f}{\partial x}=x\frac{\partial f}{\partial y}

(7)设f(x)在(0,+\infty)内具有二阶连续导数,|f''+2xf'+(x^2+1)f|\leq 1,证明\lim_{x\to+\infty}f(x)=0

(8)f(x)是在(-\infty,+\infty)上导数连续的有界函数,|f(x)-f'(x)|<=1,证明:|f(x)|<=1

七,易错题

(1)求a,b,使\lim_{x\to 0 }\left ( \frac{a}{x^2}+\frac{1}{x^4}+\frac{b}{x^5}\int _0^xe^{-t^2}dt \right ) 存在

(2)F(0)>0, F'(0)=c, 求\lim_{x\rightarrow 0}\frac{F(1-cos\, x)}{tan(x^2)}

(3)∀ x>0,y>0 都有f(xy)=xf(y)+yf(x), f'(1)=4, 求f(x)

(4)设f(x)=\left\{\begin{matrix} x+\pi ,\, -\pi \leq x<0\\ x-\pi ,\, 0 \leq x<\pi\, \, \, \, \, \end{matrix}\right. , 则f(x)的以2π为周期的Fourier级数在[-π,π]上的和函数为

八,难题

1,设f(x)在[a,b]上具有连续导数,证明:

\lim_{n\rightarrow \infty }n\left ( \int _a^bf(x)dx-\frac{b-a}{n}\sum _{k=1}^nf(a+k(b-a)/n) \right )=\frac{b-a}{2}(f(a)-f(b))

2,设f(x)在[a,b]上具有二阶导数,证明\exists\xi\in[a,b],\,\int_a^bf(x)dx=(b-a)f(\frac{a+b}{2})+\frac{(b-a)^3}{24}f''(\xi)

3,f(x)周期为π,g(x)周期为1,f(x)、g(x)连续,\lim_{x\to\infty }f(x)-g(x)=0,证明f(x)=g(x)

4,求\int_0^{\frac{\pi}{2}}cos^n x\,sin\,nx\,dx

5,设f(x)在[0,1]上可微,f(0)=0,f(1)=1,\lambda_1,\lambda_2,...,\lambda_n为n个正数,证明:存在(0,1)内n个不等的数\varepsilon_1,\varepsilon_2,...,\varepsilon_n,\,\sum_{i=1}^n\frac{\lambda_i}{f'(\varepsilon_i)}=\sum_{i=1}^n\lambda_i

6,设f(x)在[0,1]上连续可微,证明|f(x)|\leq \int_0^1(|f(x)|+|f'(x)|)dx

7,设f(x)在[a,b]上连续,证明\lim_{n\to\infty}\int_a^bf(x)sin \,nx \,dx=0

8,设f(x)=a_nx^n+...+a_1x+a_0,\,n\geq 2,其中a_k=0,1\leq k\leq n-1,当i不为k时,a_i\neq 0

    且f(x)有n个不同的实根,证明a_{k-1}a_{k+1}<0

九,解题技巧

1,逐项求导法(生成函数法)

(1)a_n=\int_{-1}^1\frac{x^{2n}}{1+e^x}dx,求\sum_{n=1}^\infty(-1)^na_n

(2)求解y''-2xy'-4y=0, y(0)=0,y'(0)=1

2,交换求和顺序法

(1)求\sum_{n>0}\frac{1}{(n+1)(n+2)}(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n})

(2)求\sum _{m,n>0,m\neq n}\frac{1}{mn|m-n|}

(3)求\sum_{n=1}^\infty\frac{1}{n^2}(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n})

(4)黎曼zeta函数\zeta(k)=1+\frac{1}{2^k}+\frac{1}{3^k}+...,证明\sum_{k\geq 2}(\zeta(k)-1)=1

3,特殊的极坐标用法

(1)f(x,y)可微,x\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial y}=0,证明:f为常数

(2)f(x,y)可微,\frac{1}{x}\frac{\partial f}{\partial x}=\frac{1}{y}\frac{\partial f}{\partial y,证明:f在极坐标中是关于r的函数

4,定义法

(1)a_n>0,\,\lim_{n\to\infty}(\frac{1+a_{n+1}}{a_n})^n=A,证明A>=e

(2)设f(x)在[0,+\infty)内可微,且\lim_{n\to\infty}(f(x)+f'(x))=0,证明\lim_{n\to\infty}f(x)=0

(3)证明\lim_{n\to\infty}\int_0^{2\pi}f(x)|sin\,nx|dx=\frac{2}{\pi}\int_0^{2\pi}f(x)dx,其中f(x)连续

(4)f(x)、g(x)在(-\infty,+\infty)上连续且周期为1,求证\lim_{n\to\infty}\int_0^1f(x)g(nx)dx=\int_0^1f(x)dx\int_0^1g(x)dx

5,其他特殊方法

(1)x=y(x-y)^2,求\int\frac{dx}{x-3y}

(2)1<f(x)<3,证明\int_0^1f(x)dx\int_0^1\frac{1}{f(x)}dx<\frac{4}{3}

(3)求I=\int_0^\pi\frac{q-cosx}{1-2qcosx+q^2}dx

(4)f(u)连续,k=\sqrt{a^2+b^2+c^2}>0,\Omega:x^2+y^2+z^2\leq1,\,I=\iiint_\Omega f(ax+by+cz)dxdydz,证明I=\pi\int_{-1}^1(1-u^2)f(ku)du

(5)求\int_0^\pi ln(1-2acosx+a^2)dx

十,反常规题

1,f(x)=\int_0^x\left ( 1+\frac{x-t}{1!}+\frac{(x-t)^2}{2!}+...+\frac{(x-t)^{n-1}}{(n-1)!} \right )e^{nt}dt,求f^{(n)}(x)

十一,其他题目

1,设f(x)在[0,+\infty)上连续,\int_0^{+\infty} f(x)dx收敛,求\lim_{y\to+\infty}\frac{1}{y}\int_0^yxf(x)dx

2,证明不存在可导的f(x),f(f(x))=1+x^2+x^4-x^3-x^5

3,f(x)在[a,b]上连续,在(a,b)上可导,0\leq a<b\leq \frac{\pi}{2},证明:\exists\varepsilon ,\eta \in(a,b),f'(\eta)tan\frac{a+b}{2}=f'(\varepsilon )\frac{sin\,\eta}{cos\,\varepsilon }

4,f''(x)连续,f''(x)>0, f(0)=f'(0)=0, u=x-f(x)/f'(x),求  \lim_{x\to0^+}\frac{\int_0^uf(t)dt}{\int_0^xf(t)dt}

5,求\int \frac{e^x(1+sin\, x)}{cos\, x}dx

6,f(x)在[a,b]上连续,\int_a^bf(x)dx=0,\,\int_a^b xf(x)dx=0,证明\exists x_1,x_2,x1\neq x_2,f(x_1)=f(x_2)=0

7,f(x)=\sum_{n=1}^\infty \frac{x^n}{n^2} \,(0\leq x\leq 1),证明:f(x)+f(1-x)=f(1)-lnxln(1-x)

8,设f(x)在[a,b]上具有二阶连续导数,f''(x)<0, f(a)=f(b)=0,

 证明:(1)当x\in(a,b)时,f(x)>0   (2)\int_a^b\left | \frac{f''(x)}{f(x)} \right |dx>\frac{4}{b-a}

9,f(x)在[1,+\infty)上有连续的二阶导数,f'(1)=1,f(1)=0,且二元函数z=(x^2+y^2)f(x^2+y^2)满足\frac{\partial ^2z}{\partial x^2}+\frac{\partial ^2z}{\partial y^2}=0,求f(x)最大值

10,设f可微,\frac{\partial f}{\partial x}=-f,\, \lim_{n\to\infty}\left ( \frac{f(0,y+\frac{1}{n})}{f(0,y)} \right )^n=e^{cot\,y},\,f(0,\frac{\pi}{2})=1,求f

11,设f(t)在(0,+\infty)上有连续的二阶导数,f(1)=0, f'(1)=1, u=f(\sqrt{x^2+y^2+z^2}),\,\frac{\partial ^2u}{\partial x^2}+\frac{\partial ^2u}{\partial y^2}+\frac{\partial ^2u}{\partial z^2}=0,求f(t)

12,设f(x,y)在D:x^2+y^2\leq1上有二阶连续偏导,且\frac{\partial^2f}{\partial x^2}+\frac{\partial^2f}{\partial y^2}=e^{-(x^2+y^2)},证明:\iint_{D}(x\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial y})dxdy=\frac{\pi}{2e}

13,\forall x,y,f(x+y)=e^yf(x)+ae^xf(y),f'(0)=1,求a和f(x)

14,f(x)在[0,1]上连续,m=\int_0^1f(x)dx,求\int_0^1\int_x^1\int_x^yf(x)f(y)f(z)dxdydz

15,设f(x)是具有三阶连续导数的实函数,\forall x,f(x)>0,f'(x)>0,f''(x)>0,f'''(x)<f(x),证明:\forall x,f'(x)<2f(x)

16,{x_n}满足x_n\geq 0,\,x_{m+n}\leq x_m+x_n,求证\{\frac{x_n}{n}\}收敛

17,f(x,y)分别关于x,y连续,且关于y单调,证明:f连续

18,f(x)在[a,b]上有连续的导数,f(a)=0,证明\int _a^b f^2(x)dx\leq \frac{(b-a)^2}{2} \int _a^b (f'(x))^2dx

19,f(x)、g(x)均为[a,b]上的连续增函数,证明\int_a^bf(x)dx\int_a^bg(x)dx\leq (b-a)\int_a^bf(x)g(x)dx

20,设a_1,b_1是任意实数,a_n=\int_0^1max(b_{n-1},x)dx,b_n=\int_0^1min(a_{n-1},x)dx,n=2,3,4...,求\lim_{n\to\infty}a_n\lim_{n\to\infty}b_n

21,(1)若\lim_{n\to\infty}a_n=a,证明\lim_{n\to\infty}\frac{a_1+a_2+...a_n}{n}=a

(2)若存在p为正整数,\lim_{n\to\infty}(a_{n+p}-a_n)=\lambda,证明\lim_{n\to\infty}\frac{a_n}{n}=\frac{\lambda}{p}

22,f(x)在[a,b]上连续,\int_a^xf(t)dt=(x-a)f(\varepsilon ),\,a\leq \varepsilon \leq x \leq b,若f'(a)存在且不为0,求\lim_{x\to a^{+}}\frac{\varepsilon -a}{x-a}

23,f(x)在x_0的邻域内n阶可导,f^{(2)}(x_0)=f^{(3)}(x_0)=...=f^{(n-1)}(x_0)=0,f^{(n)}(x_0)\neq 0\frac{f(x_0+h)-f(x_0)}{h}=f'(x_0+h\theta(h)),0<\theta(h)<1

证明\lim_{h\to 0}\theta(h)=\frac{1}{\sqrt[n-1]{n}}

24,\forall x,a,\int_{x-a}^{x+a}f(t)dt=2af(x),证明f(x)是线性函数

25,当x>-1时,f'(x)+f(x)=\frac{1}{x+1}\int_0^xf(t)dt,且f(0)=1,证明x>=0时, e^{-x}\leq f(x)\leq 1

26,求\int(|1+x|-|1-x|)dx

27,f(λx+(1-λ)y)<=λf(x)+(1-λ)f(y), ∀x,y∈R, λ∈(0,1)为常数

(1)证明f(x)连续 (2)∀a>0, ∀g(x)连续,证明\frac{1}{a}\int_0^a f(g(x))dx\geq f(\frac{1}{a}\int_0^ag(x)dx)

  • 114
    点赞
  • 709
    收藏
    觉得还不错? 一键收藏
  • 16
    评论
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值