高等代数

目录

高等代数(1)

高等代数(2)二次型

高等代数(3)向量空间


高等代数(1)多项式

1.P为不可约的多项式,若P是f的k重因式,则p是f’的k-1重因式
2.f没有重因式⇔(f,f')=1
3.初等对称多项式P_{i}=\sum_{k_1...k_{i}} x_{k_{1}} x_{k_{2}} \cdots x_{k_i},i=1,2,3...n
4.∀f可以唯一地表示成Pi的多项式。
5.∀的数域F,Q \subset F,即Q是最小数域
6. A、B为环,则A∩B为环
7.有重因式的多项式未必有重根
8.高斯引理:两个本原多项式的乘积为本原多项式。

高等代数(2)二次型

高等代数(3)向量空间

1.无限维:若V中找到任意多个线性无关的向量。则称V为无限维向量。
如:多项式1,X,X²,X³,…故所有多项式构成无限维向量。
2.过渡距阵:若(β₁,β₂,…βₙ)=(α₁,α₂,…αₙ)T,T为n阶方阵, 则称T为基α到基β的过渡矩阵。
3.过渡矩阵⇔可逆矩阵。
4.若α到β的过渡为A,β到r为B,则α到r为AB。
5.零子空间和V本身叫V的平凡子空间。

6,正交子空间

设X和Y是R^n的子空间,若\forall x\in X,y\in Y都有x^Ty=0,则称X和Y是R^n的正交子空间

7,正交补

设Y是R^n的子空间,则Y的正交补Y^\perp\begin{Bmatrix} x \in R^n | x^T y=0, \forall y \in Y \end{Bmatrix}

如 R^3中的平面和法线就互为正交补

性质:

(1)Y 和Y^\perp的维度和为n

(2)Y的一组基和Y^\perp​​​​​​​的一组基合并起来就是R的一组集。

(3)Y的正交补的正交补就是Y

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值