目录
高等代数(1)多项式
1.P为不可约的多项式,若P是f的k重因式,则p是f’的k-1重因式
2.f没有重因式⇔(f,f')=1
3.初等对称多项式
4.∀f可以唯一地表示成Pi的多项式。
5.∀的数域F,Q F,即Q是最小数域
6. A、B为环,则A∩B为环
7.有重因式的多项式未必有重根
8.高斯引理:两个本原多项式的乘积为本原多项式。
高等代数(2)二次型
高等代数(3)向量空间
1.无限维:若V中找到任意多个线性无关的向量。则称V为无限维向量。
如:多项式1,X,X²,X³,…故所有多项式构成无限维向量。
2.过渡距阵:若(β₁,β₂,…βₙ)=(α₁,α₂,…αₙ)T,T为n阶方阵, 则称T为基α到基β的过渡矩阵。
3.过渡矩阵⇔可逆矩阵。
4.若α到β的过渡为A,β到r为B,则α到r为AB。
5.零子空间和V本身叫V的平凡子空间。
6,正交子空间
设X和Y是的子空间,若都有,则称X和Y是的正交子空间
7,正交补
设Y是的子空间,则Y的正交补是
如 中的平面和法线就互为正交补
性质:
(1)Y 和的维度和为n
(2)Y的一组基和的一组基合并起来就是R的一组集。
(3)Y的正交补的正交补就是Y