概率论与数理统计

目录

1,条件概率

2,全概率公式

3,贝叶斯公式

4,独立事件

5,概率函数、概率分布函数

(1)离散型

(2)连续型

6,常见分布

(1)二项分布 B(n,p) 

(2)泊松分布 π(λ)

7,联合分布函数

8,边缘分布函数

9,边缘概率密度

10,条件分布

11,条件概率密度

12,独立变量

13,随机变量的函数

14,随机变量的期望、方差、标准差

(1)期望E

(2)方差D

(3)标准差σ

15,协方差、相关系数

(1)协方差

(2)相关性

(3)相关系数

16,切比雪夫不等式

17,伯努利大数定律

18,辛钦大数定律

19,切比雪夫大数定律

20,矩估计法

21,极大似然估计法

22,无偏估计

23,有效性

24,相合性

25,置信区间

26,正态分布的均值和方差的区间估计

27

28


1,条件概率

P(B|A)=\frac{P(AB)}{P(A)}

2,全概率公式

B_1-B_n为样本空间的分划,则\forall A,P(A)=\sum_{i=1}^nP(B_i)P(A|B_i)

3,贝叶斯公式

P(B_i)>0,P(A)>0,则P(B_i|A)=\frac{P(AB_i)}{P(A)}=\frac{P(A|B_i)P(B_i)}{\sum_{i=1}^nP(A|B_i)P(B_i)}

4,独立事件

若P(AB)=P(A)P(B),则称A、B独立。

若n个事件相互独立,则两两独立,反之,两两独立却不一定相互独立。

5,概率函数、概率分布函数

(1)离散型

概率函数(也叫分布律) P(X=x_i)=p_i

概率分布函数 F(i)=P(X<=x_i)=\sum_{j=1}^ip_j

(2)连续型

概率分布函数 F(x)=P(X\leq x)

概率分布函数是单调不减的,而且是右连续的,但不一定左连续。

所以概率分布函数的右极限和左极限都存在,F(a+0)-F(a)等于0,F(a)-F(a-0)等于X=a的概率。 

如果对于任意a,P(X=a)=0,那么存在函数f,F(x)=\int _{-\infty}^xf(t)dt

f 称为X的概率密度(即概率函数) 

6,常见分布

(1)二项分布 B(n,p) 

P(X=k)=\binom{n}{k}p^k(1-p)^{n-k}

期望为np

(2)泊松分布 π(λ

P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda}

期望为λ

7,联合分布函数

联合分布函数F(x,y)=P\{X\leq x,Y\leq y\} 

F关于x右连续,关于y右连续

8,边缘分布函数

F_X(x)=F(x,+\infty),F_Y(y)=F(+\infty,y)

9,边缘概率密度

f_X(x)=\int_{-\infty}^{+\infty} f(x,y)dy,f_Y(y)=\int_{-\infty}^{+\infty} f(x,y)dx

10,条件分布

离散型:P\left\{X=x_{i} \mid Y=y_{j}\right\}=\frac{P_{i j}}{P_{j}}

连续型:条件分布函数F_{x|y}(x, y) =\lim _{\varepsilon \rightarrow 0^{+}}\{X \leqslant x \mid y-\varepsilon<y \leqslant y+\varepsilon\}

11,条件概率密度

f_Y(y)>0则 F_{X|Y}(x \mid y)=\frac{\int_{\infty}^x f(t, y) dt}{f_{Y}(y)}

条件概率密度f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}

12,独立变量

\forall x,y,P\{X\leq x,Y\leq y\}=P\{X\leq x\}\cdot P\{Y\leq y\},则称X和Y独立。

若(X,Y)为连续型,则X和Y独立等价于f(x,y)=f_X(x)f_Y(y)恒成立。

13,随机变量的函数

(1)

若X有f_X(x),g(x)单调可导,Y=g(X),h=g^{-1},\alpha =min\{g(x)\},\beta =max\{g(x)\}

f_Y(y)= \begin{cases}f_{X}(h(y))\left|h^{\prime}(y)\right| & , \quad \alpha<y<\beta \\ 0 & , \text { else }\end{cases}

(2)对于Z=X+Y

f_{Z}(z)=\int_{-\infty}^{+\infty} f(z-y, y) d y=\int_{-\infty}^{+\infty} f(x, z-x) d x

卷积公式:若X和Y独立,则f_{Z}(z)=\int_{-\infty}^{+\infty} f_{X}(z-y) f_{Y}(y) d y=\int_{-\infty}^{+\infty} f_{X}(x) f_{Y}(z-x) d x

(3)对于Z=X/Y

f_{Z}(z)=\int_{-\infty}^{+\infty}|y| f(y z, y) d y

(4)对于M=\max \{X, Y\}, N=\min \{X, Y\}, 

若X和Y独立,则F_{M}(m)=F_{X}(m) F_{Y}(m), F_{N}(n)=1-\left(1-F_{X}(n)\right)\left(1-F_{Y}(n)\right)

14,随机变量的期望、方差、标准差

(1)期望E

性质:

(2)方差D

D(X)=E(X-E(X)^2)=E(X^2)-(E(X))^2

性质

(3)标准差σ

\sigma(X)=\sqrt{D(X)}

15,协方差、相关系数

(1)协方差

若X和Y的均值和方差都存在,则协方差cov(X,Y) = E( (X-E(X))(Y-E(Y)) ) = E(XY) - E(X)E(Y)

性质:

cov(aX,bY)=ab cov(X,Y)

cov(X1+X2,Y) = cov(X1,Y) + cov(X2,Y)

D(X+Y) = D(X) + D(Y) + 2cov(X,Y)

D(X)D(Y) >= (cov(X,Y))^2

(2)相关性

cov(X,Y)=0则称X和Y不相关。

独立则不相关,不相关不一定独立。

(3)相关系数

相关系数r_XY=\frac{cov(X,Y)}{\sqrt{D(X)D(Y)}}表示线性相关程度

r>0是正相关,r<0是负相关。

r的范围是[-1,1],越接近1、-1则相关性越强,越接近0则相关性越弱。

16,切比雪夫不等式

E=\mu,D=\sigma^2,则\forall \,\,\varepsilon >0,P\{|X-\mu|\geq \varepsilon \}\leq \frac{\sigma^2}{\varepsilon ^2}

17,伯努利大数定律

n_A是n次独立重复试验中,A发生的次数,p是每次A发生的概率,

\forall \varepsilon>0,\: \lim _{n \rightarrow \infty} P\left\{\left|\frac{n_{A}}{n}-p\right|<\varepsilon\right\}=1

18,辛钦大数定律

Xi独立同分布,E(Xi)=μ,则\forall \varepsilon>0, \lim _{n \rightarrow \infty} P\left\{\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right|<\varepsilon\right\}=1

伯努利大数定律是辛钦大数定律的一种特殊情况。

19,切比雪夫大数定律

 辛钦大数定律要求独立同分布,不要求方差,切比雪夫大数定律要求期望存在方差有界,不要求同分布

20,矩估计法

21,极大似然估计法

22,无偏估计

\hat{\theta}是θ的估计量,若E(\hat\theta)=\theta,则称\hat{\theta}是θ的无偏估计

23,有效性

对于θ的2个无偏估计,方差越小的有效性越高

24,相合性

25,置信区间

26,正态分布的均值和方差的区间估计

27

28

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值