目录
1,条件概率
2,全概率公式
若为样本空间的分划,则
3,贝叶斯公式
若,则
4,独立事件
若P(AB)=P(A)P(B),则称A、B独立。
若n个事件相互独立,则两两独立,反之,两两独立却不一定相互独立。
5,概率函数、概率分布函数
(1)离散型
概率函数(也叫分布律)
概率分布函数
(2)连续型
概率分布函数
概率分布函数是单调不减的,而且是右连续的,但不一定左连续。
所以概率分布函数的右极限和左极限都存在,F(a+0)-F(a)等于0,F(a)-F(a-0)等于X=a的概率。
如果对于任意a,P(X=a)=0,那么存在函数f,
f 称为X的概率密度(即概率函数)
6,常见分布
(1)二项分布 B(n,p)
期望为np
(2)泊松分布 π(λ)
期望为λ
7,联合分布函数
联合分布函数
F关于x右连续,关于y右连续
8,边缘分布函数
9,边缘概率密度
10,条件分布
离散型:
连续型:条件分布函数
11,条件概率密度
若则
条件概率密度
12,独立变量
若,则称X和Y独立。
若(X,Y)为连续型,则X和Y独立等价于恒成立。
13,随机变量的函数
(1)
若X有,g(x)单调可导,
则
(2)对于Z=X+Y
卷积公式:若X和Y独立,则
(3)对于Z=X/Y
(4)对于
若X和Y独立,则
14,随机变量的期望、方差、标准差
(1)期望E
性质:
(2)方差D
性质
(3)标准差σ
15,协方差、相关系数
(1)协方差
若X和Y的均值和方差都存在,则协方差cov(X,Y) = E( (X-E(X))(Y-E(Y)) ) = E(XY) - E(X)E(Y)
性质:
cov(aX,bY)=ab cov(X,Y)
cov(X1+X2,Y) = cov(X1,Y) + cov(X2,Y)
D(X+Y) = D(X) + D(Y) + 2cov(X,Y)
D(X)D(Y) >= (cov(X,Y))^2
(2)相关性
cov(X,Y)=0则称X和Y不相关。
独立则不相关,不相关不一定独立。
(3)相关系数
相关系数r_XY=\frac{cov(X,Y)}{\sqrt{D(X)D(Y)}}表示线性相关程度
r>0是正相关,r<0是负相关。
r的范围是[-1,1],越接近1、-1则相关性越强,越接近0则相关性越弱。
16,切比雪夫不等式
若,则
17,伯努利大数定律
是n次独立重复试验中,A发生的次数,p是每次A发生的概率,
则
18,辛钦大数定律
Xi独立同分布,E(Xi)=μ,则
伯努利大数定律是辛钦大数定律的一种特殊情况。
19,切比雪夫大数定律
辛钦大数定律要求独立同分布,不要求方差,切比雪夫大数定律要求期望存在方差有界,不要求同分布
20,矩估计法
21,极大似然估计法
22,无偏估计
是θ的估计量,若,则称是θ的无偏估计
23,有效性
对于θ的2个无偏估计,方差越小的有效性越高