Gauss定理:n为平方和等价于n的任一4k+3型素因子的幂次为偶数
HTML代码:
<html>
<head>
<title>高斯定理</title>
</head>
<BODY BGColor=F0F8FF>
<H1><font color=000000 size=7>Gauss定理
<br>n为平方和等价于n的任一4k+3型素因子的幂次为偶数</H1>
<H2><font color=40e0d0 size=6>引理1 设p≡3(mod4),则x<sup>2</sup>≡-1(mod p)无解</H2>
<pre>证:反设x<sup>2</sup>≡-1(mod p) ,则x<sup>p-1</sup>≡(-1)<sup>(p-1)/2</sup>(modP),
所以,1≡-1(<a href="http://baike.baidu.com/view/263807.htm">费马小定理</a>),矛盾!</pre>
<H2><font color=pink size=6>引理2,设p≡3(mod4) ,p|n,n=x<sup>2</sup>+y<sup>2</sup>,则n中p的幂次为偶数</H2>
<pre>证:若p<STRIKE>|</STRIKE>x,则0≡x<sup>-2</sup>n≡1+x<sup>-2</sup>y<sup>2</sup>(mod p),矛盾!
∴p|x且p|y
设p<sup>a</sup>||(x,y),则p<sup>2a</sup>|n,
设n=p<sup>2a</sup>n<sub>1</sub>,x=p<sup>a</sup>x<sub>1</sub>,y=p<sup>a</sup>y<sub>1</sub>
则n<sub>1</sub>=x<sub>1</sub><sup>2</sup>+y<sub>1</sub><sup>2</sup>
若p|n<sub>1</sub>,同上可得,p|x<sub>1</sub>且p|y<sub>1</sub>,矛盾!
∴p<STRIKE>|</STRIKE>n<sub>1</sub>,即n中p的幂次为2a为偶数
</pre>
<H2><font color=999999 size=6>小结,若n为平方和,则n的任一4k+3型素因子的幂次为偶数</H2>
<h2><font color=808033 size=6>引理3,任意多个平方和的乘积为平方和</h2>
证:(x<sup>2</sup>+y<sup>2</sup>)(x<sub>1</sub><sup>2</sup>+y<sub>1</sub><sup>2</sup>)=(xx<sub>1</sub>+yy<sub>1</sub>)<sup>2</sup>+(xy<sub>1</sub>-x<sub>1</sub>y)<sup>2</sup>
<h2><font color=b22222 size=6>引理4,设p≡1(mod4),则存在x,y,p=x<sup>2</sup>+y<sup>2</sup></h2>
<pre>证:(p-1)!≡(1*2*3...*((p-1)/2))<sup>2</sup>≡-1(mod p)(<a href="http://baike.so.com/doc/6709456.html">威尔逊定理</a>)
∴存在x,y,x<sup>2</sup>+y<sup>2</sup>=m<sub>1</sub>p,0<m<sub>1</sub><p
若m<sub>1</sub>>1,设x≡x<sub>1</sub>(mod m≡<sub>1</sub>),y≡y<sub>1</sub>(mod m≡m<sub>1</sub>),-m<sub>1</sub>/<sub>2</sub><x<sub>1</sub><=m<sub>1</sub>/<sub>2</sub>,-m<sub>1</sub>/<sub>2</sub><y<sub>1</sub><=m<sub>1</sub>/<sub>2</sub>
x<sub>1</sub><sup>2</sup>+y<sub>1</sub><sup>2</sup>≡x<sup>2</sup>+y<sup>2</sup>≡0(mod m<sub>1</sub>)
设x<sub>1</sub><sup>2</sup>+y<sub>1</sub><sup>2</sup>=m<sub>1</sub>m<sub>2</sub><=(m<sub>1</sub>/<sub>2</sub>)<sup>2</sup>*2<m<sub>1</sub><sup>2</sup>,则0<m<sub>2</sub><m<sub>1</sub>
m<sub>1</sub>p*m<sub>1</sub>m<sub>2</sub>=(x<sup>2</sup>+y<sup>2</sup>)*(x<sub>1</sub><sup>2</sup>+y<sub>1</sub><sup>2</sup>)=(xx<sub>1</sub>+yy<sub>1</sub>)<sup>2</sup>+(xy<sub>1</sub>-x<sub>1</sub>y)<sup>2</sup>
∴设x<sub>2</sub>=(xx<sub>1</sub>+yy<sub>1</sub>)/m<sub>1</sub>,y<sub>2</sub>=(xy<sub>1</sub>-x<sub>1</sub>y)/m<sub>1</sub>有x<sub>2</sub><sup>2</sup>+y<sub>2</sub><sup>2</sup>=m<sub>2</sub>p
则m<sub>1</sub>降为了m<sub>2</sub>
无穷递降可得,存在x,y,x<sup>2</sup>+y<sup>2</sup>=p
<font color=012930>∴若n的任一4k+3型素因子的幂次为偶数,则n为平方和的乘积,也就为平方和
<font color=000000><b>证毕<b>
</pre>
</body>
</html>
网页: