图的邻接表:广度优先遍历

图的邻接表:广度优先遍历

作者: 冯向阳时间限制: 1S章节: DS:图

截止日期: 2022-06-30 23:55:00

问题描述 :

目的:使用C++模板设计并逐步完善图的邻接表抽象数据类型(ADT)。

内容:(1)请参照图的邻接矩阵模板类原型,设计并逐步完善图的邻接表ADT。(由于该环境目前仅支持单文件的编译,故将所有内容都集中在一个源文件内。在实际的设计中,推荐将抽象类及对应的派生类分别放在单独的头文件中。)

(2)设计并实现一个算法,应用递归的程序设计方法,对一个已存在的图进行广度优先遍历(BFS),并输出遍历的顶点线性序列。遍历的起点通过输入指定。注意:遍历时,仅从该点出发遍历整个图,如果图不连通,则只遍历一个子图。图的存储结构采用邻接表。将其加入到ADT中。

注意:DG(有向图), DN(有向网), UDG(无向图), UDN(无向网)

参考函数原型:

//BFS遍历 

template<class TypeOfVer, class TypeOfEdge>

void adjlist_graph<TypeOfVer, TypeOfEdge>::BFS_Traverse(int u);

图的邻接表模板类原型参考如下:

/* 边表的结点定义 */

template<class TypeOfEdge>

struct edgeNode

{

    int data;

    TypeOfEdge weight;

    edgeNode<TypeOfEdge> *next;

    edgeNode(const int &d, edgeNode<TypeOfEdge> *ptr = NULL) //构造函数,用于构造其他结点(无权图) 

    //函数参数表中的形参允许有默认值,但是带默认值的参数需要放后面

    {

        next = ptr;

        data = d;

    }

    edgeNode(const int &d, const TypeOfEdge &w, edgeNode<TypeOfEdge> *ptr = NULL) //构造函数,用于构造其他结点(带权图) 

    //函数参数表中的形参允许有默认值,但是带默认值的参数需要放后面

    {

        next = ptr;

        data = d;

        weight = w;

    }

    int getData(){ return data;}  //取得结点的序号(顶点集) 

    TypeOfEdge getWeight(){ return weight;}  //取得边集中对应边的权值 

    void SetLink( edgeNode<TypeOfEdge> *link ){ next = link; }  //修改结点的next域 

    void SetData( int value ){ data = value; }   //修改结点的序号(顶点集) 

    void SetWeight(TypeOfEdge value ){ weight = value; }   //修改边集中对应边的权值   

};

//图的邻接表类

template<class TypeOfVer, class TypeOfEdge>

struct verNode

{

    TypeOfVer ver;

    edgeNode<TypeOfEdge> *head;

    

    verNode(edgeNode<TypeOfEdge> *h = NULL){head = h;} 

    TypeOfVer getVer(){ return ver;}  //取得结点值(顶点集) 

    edgeNode<TypeOfEdge> *getHead(){ return head;}  //取得对应的边表的头指针 

    void setVer(TypeOfVer value){ ver = value;}  //设置结点值(顶点集) 

    void setHead(edgeNode<TypeOfEdge> *value){ head = value;}  //设置对应的边表的头指针

};

template <class TypeOfVer, class TypeOfEdge>

class adjlist_graph{

    private:

       int Vers;           //顶点数 

       int Edges;          //边数 

       verNode<TypeOfVer,TypeOfEdge> *verList;

       

       string GraphKind;     //图的种类标志 

       

       bool Delete_Edge( int u, int v ); 

       bool DFS(int u, int &num, int visited[]); //DFS遍历(递归部分)

    public:

       adjlist_graph( const string &kd, int vSize, const TypeOfVer d[]); //构造函数构造一个只有结点没有边的图。 

       adjlist_graph( const string &kd, int vSize, int eSize, const TypeOfVer d[], int **e); 构造函数构造一个无权图。5个参数的含义:图的类型、结点数、边数、结点集和边集 

       adjlist_graph( const string &kd, int vSize, int eSize, const TypeOfVer d[], int **e, const TypeOfEdge w[]); //构造函数构造一个有权图。

       bool GraphisEmpty() { return Vers == 0; }  //判断图空否

       string GetGraphKind(){ return GraphKind; }

       bool GetVer(int u, TypeOfVer &data); //取得G中指定顶点的值 

       int GetFirstAdjVex(int u, int &v); //返回G中指定顶点u的第一个邻接顶点的位序(顶点集)。若顶点在G中没有邻接顶点,则返回-1

       int GetNextAdjVex(int u, int v, int &w); //返回G中指定顶点u的下一个邻接顶点(相对于v)的位序(顶点集)。若顶点在G中没有邻接顶点,则返回false

       bool PutVer(int u, TypeOfVer data); //对G中指定顶点赋值 

       bool InsertVer(const TypeOfVer &data); //往G中添加一个顶点 

       int LocateVer(TypeOfVer data); //返回G中指定顶点的位置 

       bool ExistEdge(int u, int v);

       bool PrintVer();  //输出顶点集 

       bool PrintAdjList();  //输出邻接矩阵 

       int GetVerNum(){ return Vers;}    //取得当前顶点数 

       int GetEdgeNum(){ return Edges;}  //取得当前边数 

       bool Insert_Edge(int u, int v); //无权图插入一条边

       bool Insert_Edge(int u, int v, TypeOfEdge w); //有权图插入一条边

       bool DeleteVer(const TypeOfVer &data); //往G中删除一个顶点 

       bool DeleteEdge( int u, int v ); //删除边 (外壳:有向(删除1条边), 无向(删除2条边))

       void DFS_Traverse(int u); //DFS遍历(外壳部分)

       void BFS_Traverse(int u); //BFS遍历

       ~adjlist_graph(); //析构函数 

};

输入说明 :

建图的输入数据格式参见建图的算法说明。(以无权图为例)

第一行:图的类型

第二行:结点数

第三行:结点集

第四行:边数

第五行:边集

第六行:起始顶点的位序

输出说明 :

第一行:顶点集

第二行:邻接表

空行

第三行:BFS遍历序列(结点之间用->分隔)

输入范例 :

UDG
8
V1 V2 V3 V4 V5 V6 V7 V8
8
0 1
0 2
1 3
1 4
2 5
2 6
3 7
4 7
5

输出范例 :

V1 V2 V3 V4 V5 V6 V7 V8
V1->2->1->nullptr
V2->4->3->0->nullptr
V3->6->5->0->nullptr
V4->7->1->nullptr
V5->7->1->nullptr
V6->2->nullptr
V7->2->nullptr
V8->4->3->nullptr

V6->V3->V7->V1->V2->V5->V4->V8


#include<iostream>
#include<queue>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
int flag = 0,flag2=0;
int cun[1000]= {0};
template<class TypeOfEdge>
struct Edge
{
    int vex;
    TypeOfEdge weight;
    struct Edge* next=NULL;
} ;
template<class TypeOfVer,class TypeOfEdge>
struct Ver
{
    string ver;
    Edge<TypeOfEdge>* next=NULL;
} ;
template<class TypeOfVer,class TypeOfEdge>
struct Graph
{
    Ver<TypeOfVer,TypeOfEdge> AdjList[100];
    int vnum;
    int bnum;
    void ADDUDN(Graph<TypeOfVer,TypeOfEdge> &G);
    void AWeight(Graph<TypeOfVer,TypeOfEdge>& G);
    void creatUDN(Graph<TypeOfVer,TypeOfEdge> &G);
    void creatDG(Graph<TypeOfVer,TypeOfEdge> &G);
    int findvex(Graph<TypeOfVer,TypeOfEdge> *G,string v);
    void DFS(Graph<TypeOfVer,TypeOfEdge>&G,int num);
    void BFS(Graph<TypeOfVer,TypeOfEdge>&G,int num);
} ;

template<class TypeOfVer,class TypeOfEdge>
void Graph<TypeOfVer,TypeOfEdge>::creatUDN(Graph &G)
{
	cin >>G.vnum ;
	for (int i = 0; i <G.vnum; i++)
	{
		cin >> G.AdjList[i].ver;
	}
	cin >> G.bnum;
	for (int i = 0; i < G.bnum; i++)
	{
		int x1;
		int x2;
		cin >> x1 >> x2;
		Edge<TypeOfEdge>* pa = new Edge<TypeOfEdge>;
		pa->vex = x2;
		 pa->next= G.AdjList[x1].next ;
		G.AdjList[x1].next = pa;
		Edge<TypeOfEdge>* pb = new Edge<TypeOfEdge>;
		pb->vex = x1;
		 pb->next= G.AdjList[x2].next ;
		G.AdjList[x2].next = pb;
	}
}
template<class TypeOfVer,class TypeOfEdge>
void Graph<TypeOfVer,TypeOfEdge>::creatDG(Graph &G)
{
    cin >> G.vnum;
    for (int i = 0; i < G.vnum; i++)
    {
        cin >> G.AdjList[i].ver;
    }
    cin >> G.bnum;
    for (int i = 0; i < G.bnum; i++)
    {
        int x1;
        int x2;
        cin >> x1 >> x2;
        //cun[i][0] = x1;
        //cun[i][1] = x2;
        Edge<TypeOfEdge>* pa = new Edge<TypeOfEdge>;
        pa->vex = x2;
        pa->next=G.AdjList[x1].next;
        G.AdjList[x1].next = pa;
    }
}

template<class TypeOfVer,class TypeOfEdge>
void Graph<TypeOfVer,TypeOfEdge>::BFS(Graph<TypeOfVer,TypeOfEdge>&G,int num)
{
	queue<int> Q;
	Q.push(num);
	cun[num] = 1;
	cout << G.AdjList[num].ver ;
	Edge<TypeOfEdge>*pa = G.AdjList[num].next;
	while (!Q.empty())
	{
		int xx = Q.front();
		Q.pop();
		pa=G.AdjList[xx].next;
		while (pa)
		{
			if (cun[pa->vex] == 0)
			{
				cout<< "->"<< G.AdjList[pa->vex].ver;
				cun[pa->vex] = 1;
				Q.push(pa->vex);
			}
			pa = pa->next;
		}
	}
}
template<class TypeOfVer,class TypeOfEdge>
int Graph<TypeOfVer,TypeOfEdge>::findvex(Graph *G,string v)
{
    int i;
    for(i=0; i<G->vnum; i++)
    {
        if(v==G->AdjList[i].ver)
        {
            return i;
        }
    }
    return -1;
}
int main()
{
    string kind;
    cin >> kind;
    Graph<char,int> G;
    if (kind == "DN")
    {
        int flag = 0;
        G.creatDG(G);
        int num;
        cin>>num;
        for (int w = 0; w < G.vnum; w++)
        {
            if (flag == 1)
            {
                cout << " ";
            }
            flag = 1;
            cout << G.AdjList[w].ver;
        }
        cout << endl;
        for (int m = 0; m < G.vnum; m++)
        {
            cout << G.AdjList[m].ver;
            Edge<int>* pa =G.AdjList[m].next;
            while (pa)
            {
                cout << "->"<< pa->vex ;
                pa = pa->next;
            }
            if (pa == NULL)
            {
                cout << "->" << "nullptr" << endl;
            }
        }
        cout<<endl;
        G.BFS(G,num);
    }
    else if (kind == "UDN")
    {
        G.creatUDN(G);
        int num;
        cin>>num;
        for (int w = 0; w < G.vnum; w++)
        {
            if (flag == 1)
            {
                cout << " ";
            }
            flag = 1;
            cout << G.AdjList[w].ver;
        }
        cout << endl;
        for (int m = 0; m < G.vnum; m++)
        {
            cout << G.AdjList[m].ver;
            Edge<int>* pa = G.AdjList[m].next;
            while (pa)
            {
                cout << "->"<< pa->vex ;
                pa = pa->next;
            }
            if (pa == NULL)
            {
                cout << "->" << "nullptr" << endl;
            }
        }
        cout<<endl;
        G.BFS(G,num);
    }
    else if(kind=="DG")
    {
        G.creatDG(G);
        int num;
        cin>>num;
        for (int w = 0; w < G.vnum; w++)
        {
            if (flag == 1)
            {
                cout << " ";
            }
            flag = 1;
            cout << G.AdjList[w].ver;
        }
        cout << endl;
        for (int m = 0; m < G.vnum; m++)
        {
            cout << G.AdjList[m].ver;
            Edge<int>* pa =G.AdjList[m].next;
            while (pa)
            {
                cout << "->"<< pa->vex ;
                pa = pa->next;
            }
            if (pa == NULL)
            {
                cout << "->" << "nullptr" << endl;
            }
        }
        cout<<endl;
        G.BFS(G,num);
    }
    else if(kind=="UDG")
    {
       G.creatUDN(G);
        int num;
        cin>>num;
        for (int w = 0; w < G.vnum; w++)
        {
            if (flag == 1)
            {
                cout << " ";
            }
            flag = 1;
            cout << G.AdjList[w].ver;
        }
        cout << endl;
        for (int m = 0; m < G.vnum; m++)
        {
            cout << G.AdjList[m].ver;
            Edge<int>* pa = G.AdjList[m].next;
            while (pa)
            {
                cout << "->"<< pa->vex ;
                pa = pa->next;
            }
            if (pa == NULL)
            {
                cout << "->" << "nullptr" << endl;
            }
        }
        cout<<endl;
        G.BFS(G,num);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值