【小白做科研(五)】复现代码(下)

本文分享了作者在复现深度学习模型过程中关于数据处理、训练、测试的经验。通过重构数据迭代器,作者体会到代码逻辑并非想象中复杂,并提醒不要盲目崇拜原始代码。使用`tqdm`库进行训练过程的动态显示,利用`torchmetrics`进行模型评估。目前,作者已将模型训练和评测封装为外部函数,并提供了代码仓库链接供读者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

上次说到了复现模型,欠着训练和评测都没讲,这周把训练评测都搞定了,然后又复现了一篇新的,有一个感触就是深度学习这些模型看着感觉怪吓人,但是代码逻辑不是特别复杂;而且自己写一写这些代码,真的感觉入了门,以及pytorch forum竟然给我发了邮件说把我提升了用户评级(因为我经常看他们博客)hh~

这一篇也主要分享一些看到的好的博客,以及遇到的各种困难, 还有解决的过程。

数据处理

之前搬了微软在TensorFlow平台实现的手写iterator到Pytorch上,心里其实一直有个疙瘩因为没有用pytorch自带的DatasetsDataloader,再加上新复现的模型有一些特别的要求,我想的就索性重构一下原来手写的Iterator,实现过程调用了好几个torchtext的api(因为感觉很帅hh),但是我中间测试了一下发现新写的比原来的慢了5s。。。 具体原因还在探究,心态血崩后觉得以后还是不能盲目崇拜,有时候原始丑陋的代码也是很管用的。

训练

训练过程其实没啥说的,有一个好东西叫做tqdm是python的一个包,可以包装iterator然后动态显示进程。个性化显示数据等等,截张图放下面hh

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值