同余定理

小光棍数

时间限制:1000 ms  |  内存限制:65535 KB
难度:1
描述
最近Topcoder的XD遇到了一个难题,倘若一个数的三次方的后三位是111,他把这样的数称为小光棍数。他已经知道了第一个小光棍数是471,471的三次方是104487111,现在他想知道第m(m<=10000000000)个小光棍数是多少?
输入
有多组测试数据。第一行一个整数n,表示有n组测试数据。接下来的每行有一个整数m。
输出
输出第m个小光棍数。
样例输入
1
1
样例输出
471


代码:

#include <bits/stdc++.h>
using namespace std;
int main()
{
    long n,x;
    cin>>n;
    while(n--)
    {
        cin>>x;
        cout<<471+(x-1)*1000<<endl;
    }
    return 0;
}
关键代码:
471+(x-1)*1000

还有一个地方需要注意就是需要定义为long 型;

同余定理:

所谓的同余,顾名思义,就是许多的数被一个数d去除,有相同的余数。d数学上的称谓为模。如a=6,b=1,d=5,则我们说a和b是模d同余的。因为他们都有相同的余数1。

数学上的记法为:

a≡ b(mod d)

可以看出当n<d的时候,所有的n都对d同商,比如时钟上的小时数,都小于12,所以小时数都是模12的同商.

对于同余有三种说法都是等价的,分别为:

(1) a和b是模d同余的.

(2) 存在某个整数n,使得a=b+nd .//说的很长,下面的很多还没用到,但是关键是这个式子要理解,上面的基础也要理解

(3) d整除a-b.

可以通过换算得出上面三个说话都是正确而且是等价的.

折叠定律

同余公式也有许多我们常见的定律,比如相等律,结合律,交换律,传递律….如下面的表示:

1)a≡a(mod d)

2)a≡b(mod d)→b≡a(mod d)

3)(a≡b(mod d),b≡c(mod d))→a≡c(mod d)

如果a≡x(mod d),b≡m(mod d),则

4)a+b≡x+m (mod d)

5)a-b≡x-m (mod d)

6)a*b≡x*m (mod d )

我们可以用一个圆上的点来表示具有相同余数的数。比如钟的盘面上的1点时数,表示所有余数为1的数。

折叠应用  下面来说说同余式定律6的应用,我们知道一个数的各个位数之和如果能被3整除那么这个数也能被3整除,如12,因为1+2=3能被3整除,所以12也能被3整除。如果我们利用定律6,就可以找出任何一个数能被另一个数整除的表达式来。

如我们用11来试试,11可以表示为10+1,所以有同余式:

10≡-1 (mod 11)

把上式两边都乘以各自,即:

10*10≡(-1)(-1)=1 (mod 11)

10*10*10≡(-1)(-1)(-1)=-1 (mod 11)

10*10*10*10≡1 (mod 11)

我们可以发现,任何一个(在十进制系统中表示的)整数

如果它的数码交替到变号之和能被11整除,这个数就能被11整除,如1353这个数它的数码交替变号之和为:1+(-3)+5+(-3)=0,因为0能被11整除,所以1353也能被11整除。其他的数的找法也一样,都是两边都乘以各自的数,然后找出右边的数的循环数列即可。

折叠补充

还有一个定律7)当d为素数时 若ab≡0 mod(d) 则有 a or b≡0 mod(d)



阅读更多

没有更多推荐了,返回首页