同余定理

原创 2018年04月17日 17:45:26

小光棍数

时间限制:1000 ms  |  内存限制:65535 KB
难度:1
描述
最近Topcoder的XD遇到了一个难题,倘若一个数的三次方的后三位是111,他把这样的数称为小光棍数。他已经知道了第一个小光棍数是471,471的三次方是104487111,现在他想知道第m(m<=10000000000)个小光棍数是多少?
输入
有多组测试数据。第一行一个整数n,表示有n组测试数据。接下来的每行有一个整数m。
输出
输出第m个小光棍数。
样例输入
1
1
样例输出
471


代码:

#include <bits/stdc++.h>
using namespace std;
int main()
{
    long n,x;
    cin>>n;
    while(n--)
    {
        cin>>x;
        cout<<471+(x-1)*1000<<endl;
    }
    return 0;
}
关键代码:
471+(x-1)*1000

还有一个地方需要注意就是需要定义为long 型;

同余定理:

所谓的同余,顾名思义,就是许多的数被一个数d去除,有相同的余数。d数学上的称谓为模。如a=6,b=1,d=5,则我们说a和b是模d同余的。因为他们都有相同的余数1。

数学上的记法为:

a≡ b(mod d)

可以看出当n<d的时候,所有的n都对d同商,比如时钟上的小时数,都小于12,所以小时数都是模12的同商.

对于同余有三种说法都是等价的,分别为:

(1) a和b是模d同余的.

(2) 存在某个整数n,使得a=b+nd .//说的很长,下面的很多还没用到,但是关键是这个式子要理解,上面的基础也要理解

(3) d整除a-b.

可以通过换算得出上面三个说话都是正确而且是等价的.

折叠定律

同余公式也有许多我们常见的定律,比如相等律,结合律,交换律,传递律….如下面的表示:

1)a≡a(mod d)

2)a≡b(mod d)→b≡a(mod d)

3)(a≡b(mod d),b≡c(mod d))→a≡c(mod d)

如果a≡x(mod d),b≡m(mod d),则

4)a+b≡x+m (mod d)

5)a-b≡x-m (mod d)

6)a*b≡x*m (mod d )

我们可以用一个圆上的点来表示具有相同余数的数。比如钟的盘面上的1点时数,表示所有余数为1的数。

折叠应用  下面来说说同余式定律6的应用,我们知道一个数的各个位数之和如果能被3整除那么这个数也能被3整除,如12,因为1+2=3能被3整除,所以12也能被3整除。如果我们利用定律6,就可以找出任何一个数能被另一个数整除的表达式来。

如我们用11来试试,11可以表示为10+1,所以有同余式:

10≡-1 (mod 11)

把上式两边都乘以各自,即:

10*10≡(-1)(-1)=1 (mod 11)

10*10*10≡(-1)(-1)(-1)=-1 (mod 11)

10*10*10*10≡1 (mod 11)

我们可以发现,任何一个(在十进制系统中表示的)整数

如果它的数码交替到变号之和能被11整除,这个数就能被11整除,如1353这个数它的数码交替变号之和为:1+(-3)+5+(-3)=0,因为0能被11整除,所以1353也能被11整除。其他的数的找法也一样,都是两边都乘以各自的数,然后找出右边的数的循环数列即可。

折叠补充

还有一个定律7)当d为素数时 若ab≡0 mod(d) 则有 a or b≡0 mod(d)



学习历程-同余定理两大基本应用

1.大整数取模:应用公式可做到边运算边取余。公式入下:例如:1234%10首先整数都可化成如此形式,如1234化成((1*10+2)*10+3)*10+4进行求余(((1*10+2)*10+3)*10...
  • a311609000531
  • a311609000531
  • 2017-09-05 18:12:04
  • 169

2016 (同余定理)

题目: 给出正整数 n 和 m,统计满足以下条件的正整数对 (a,b) 的数量: 1. 1≤a≤n,1≤b≤m; 2. a×b 是 2016 ...
  • wyi06
  • wyi06
  • 2017-04-20 10:36:36
  • 270

【笔试/面试】—— 从同余定理到大数求余

所谓大数,即为无法使用诸如 int/long等基本数据类型保存的数据,比如1234656789101112,显然在 Python 世界不存在任何关于整型精度的问题。 既然无法使用基本数据类型保存大数,...
  • lanchunhui
  • lanchunhui
  • 2016-04-14 20:21:04
  • 959

【杭电-oj】-1212-Big Number(同余定理求余数)

Big Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tot...
  • Bear1998
  • Bear1998
  • 2016-07-18 15:57:27
  • 284

【light oj1078】Integer Divisibility(同余定理)

PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB ...
  • better_space
  • better_space
  • 2016-09-29 14:23:41
  • 160

【 同 余 定 理 (补充)】

分三类:口诀套用,化余为一,其他 “差同减差,和同加和,余同取余,最小公倍加”这是同余问题的口诀。同余公式也有许多我们常见的定律,比如相等律,结合律,交换律,传递律….如下面的表示:1)a≡a(mo...
  • WYK1823376647
  • WYK1823376647
  • 2016-07-31 11:16:08
  • 456

快速幂+同余定理

Description People are different. Some secretly read magazines full of interesting girls' pictu...
  • KingJordon
  • KingJordon
  • 2016-07-23 12:11:00
  • 170

NYOJ 205 求余数 (大数求余 & 同余定理 )

求余数 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述现在给你一个自然数n,它的位数小于等于一百万,现在你要做的就是求出这个数除10003之后的...
  • shouwang_tomorrow
  • shouwang_tomorrow
  • 2015-09-17 19:36:51
  • 305

同余定理在编程中的应用

推论:对于加法、乘法、乘方运算,算好后取余和边算边取余是等价的 以加法为例: (a+b+c+...d)%m 将a,b,c..,d分解成z1*m+k1 , z2*m+k2 , z3*m+k3.....z...
  • wlx65003
  • wlx65003
  • 2015-12-07 21:21:16
  • 523

利用同余定理求大整数余数(acm练习)

求余数 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 现在给你一个自然数n,它的位数小于等于一百万,现在你要做的就是求出这个数除10003之后的余数 输入 第一行有一个...
  • qq_33054511
  • qq_33054511
  • 2017-03-19 22:52:09
  • 506
收藏助手
不良信息举报
您举报文章:同余定理
举报原因:
原因补充:

(最多只允许输入30个字)