Adam 优化算法

博客介绍了Adam优化算法,它结合了RMSprop和Momentum的优点,具有快速收敛、效果显著的特点,适用于多层感知机模型。内容包括RMSprop的基础和Adam算法的原理。

一、RMSprop(均方根)

在这里插入图片描述
在图中这样的情况时,梯度下降在横轴方向前进,在纵轴方向却会有大幅度的抖动。我们把横轴代表参数 w1,把纵轴代表参数 w2。
注意,作为例子我们此处只引入了2个参数,实际情况会复杂很多。这里我们依然会用到指数加权平均数
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、Adam 算法

当把 Momentum 与 RMSprop 算法结合在一起时,就是 Adam 算法
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

这是Adam 优化算法和其他优化算法在多层感知机模型中的对比,可见其收敛的速度较快,效果明显,并且Adam 算法很容易实现,有很高的计算效率和较低的内存需求。

### 关于Adam优化算法 #### Adam优化算法简介 Adam是一种用于随机优化方法,在机器学习特别是深度学习领域广泛应用。该方法结合了AdaGrad能够有效处理稀疏梯度的优点以及RMSProp应对在线问题的能力[^1]。 #### 工作原理 Adam通过计算梯度的一阶矩估计(均值)和二阶矩估计(未中心化的方差),来动态调整每个参数的学习率。具体来说,对于时间步$t$处的参数更新规则如下: - 计算一阶矩估计$m_t$ - 计算二阶矩估计$v_t$ 其中,$\beta_1,\ \beta_2\in[0,1)$分别是控制指数衰减率的超参数,默认设置通常为$(\beta_1=0.9,\ \beta_2=0.999)$;而$\epsilon>0$是为了防止除零错误的小常数项,一般取值为$1e^{-8}$。最终参数更新表达式可以写作: ```python m_t = beta1 * m_{t-1} + (1 - beta1) * g_t v_t = beta2 * v_{t-1} + (1 - beta2) * (g_t ** 2) # 偏置校正 m_hat = m_t / (1 - beta1**t) v_hat = v_t / (1 - beta2**t) theta_t = theta_{t-1} - alpha * m_hat / (sqrt(v_hat) + epsilon) ``` 这里`alpha`代表基础学习速率,`g_t`表示当前时刻的目标函数相对于模型参数的梯度向量。 #### 应用场景 由于其良好的收敛性能和较低内存消耗特性,使得Adam非常适合应用于大规模数据集上的神经网络训练过程之中。此外,它也适用于非稳态目标环境下的最优化求解任务。 #### 解读与理解 建立可解释的基础线性或逻辑回归作为对比基准有助于加深对更复杂模型的理解并指导特征工程方向的选择。因此,在实际应用中先尝试简单的基线模型再逐步过渡到像Adam这样的高级技术不失为一种明智的做法[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值