一、L0 Norm
L0 范数对应于向量中非零元素的总数
例如,向量(0,0)和(0,2)的L0范数为1,因为只有一个非零元素。
L0范数的一个很好的实用示例是当具有两个向量(用户名和密码)时。
如果向量的L0范数等于0,则登录成功。否则,如果L0范数为1,则意味着用户名或密码不正确,但都不正确。最后,如果L0规范为2,则意味着用户名和密码都不正确。
二、L1 Norm
也称为 曼哈顿距离或出租车规范。
L1范数是空间中向量的大小之和。这是测量向量之间距离的最自然的方法,即向量分量的绝对差之和。
在此规范中,向量的所有分量均被加权。
例如,向量X = [3,4]:

L1范数的计算公式为