TensorFlow:最大最小值、均值、和、softmax 及 argmax 的应用

一、最大最小值、均值、和

通过 tf.reduce_max, tf.reduce_min, tf.reduce_mean, tf.reduce_sum 可以求解张量在某个维度上的最大、最小、均值、和,也可以求全局最大、最小、均值、和信息。

考虑 shape 为[4,10]的张量,其中第一个维度代表样本数量,第二个维度代表了当前样
本分别属于10 个类别的概率
在这里插入图片描述
当不指定axis 参数时,tf.reduce_*函数会求解出全局元素的最大、最小、均值、和:
在这里插入图片描述
与均值函数相似的是求和函数tf.reduce_sum(x,axis),它可以求解张量在axis 轴上所有特征的和
在这里插入图片描述

二、softmax 和 argmax

除了希望获取张量的最值信息,还希望获得最值所在的索引号,例如分类任务的标签
预测。

考虑10 分类问题,我们得到神经网络的输出张量out,shape 为[2,10],代表了2 个
样本属于10 个类别的概率,由于元素的位置索引代表了当前样本属于此类别的概率,预测时往往会选择概率值最大的元素所在的索引号作为样本类别的预测值:
在这里插入图片描述
此时每个索引号上的概率值代表了属于此索引号的类别的概率,对于第一个样本来说索引为 5 的类别概率最大,所以在预测时考虑第一个样本应该最有可能属于类别 5

此时就需要求解最大值索引号的一个典型应用。

通过 tf.argmax(x, axis)tf.argmin(x, axis)可以求解在axis 轴上,x 的最大值、最小值所在的索引号:
在这里插入图片描述
可以看到,这 2 个样本概率最大值出现在索引 5和3 上,因此最有可能是类别 5 和 3,我们将类别 5和3 作为这2 个样本的分别的预测类别。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南淮北安

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值