F - Fraction HDU - 5912 (周练)

题目:
在这里插入图片描述
在这里插入图片描述
题意:由上图可以看出要求最终分式的分子和分母,
思路:可以看出该分式由若干个分式组成,且每个分式的计算方法是一样的,所以可以吧一个大问题分为若干个小问题解决,所以可以使用递归解决(保留最简分数)
AC代码:

import java.io.*;
import java.math.*;
import java.math.BigInteger;
import java.util.*;
public class Main {
	public static void main(String[] args) {
		Scanner sc=new Scanner(System.in);
		int t=sc.nextInt();
		for(int o=0;o<t;o++) {
			int n=sc.nextInt();
			int a[]=new int[n];
			int b[]=new int[n];
			for(int i=0;i<n;i++) {
				a[i]=sc.nextInt();
			}
			for(int i=0;i<n;i++) {
				b[i]=sc.nextInt();
			}
			int arr[]=new int [2];
			arr[0]=b[n-1];
			arr[1]=a[n-1];
			show(a,b,n-2,arr);
			int p=gcd(arr[0],arr[1]);
			arr[0]/=p;
			arr[1]/=p;
//			for(int i=2;i<=Math.min(arr[1],arr[0]);i++) {
//				if(arr[0]%i==0&&arr[1]%i==0) {
//					arr[0]/=i;
//					arr[1]/=i;
//				}
//			}
			System.out.println("Case #"+(1+o)+": "+arr[0]+" "+arr[1]);
		}	
	}
	public static int[] show(int a[],int b[],int x,int arr[]) {
		if(x<0)return arr;
		else {
			int o=gcd(arr[0],arr[1]);
			arr[0]/=o;
			arr[1]/=o;
			int m=arr[0];//上面的
			int n=arr[1];//下面的
			
			arr[0]=b[x]*n;
			arr[1]=a[x]*n+m;
			o=gcd(arr[0],arr[1]);
			arr[0]/=o;
			arr[1]/=o;
			return show(a,b,x-1,arr);
		}
	}
	private static int gcd(int a, int b) {
		if(b==0)return a;
		else return gcd(b,a%b);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值