HDU 2544(最短路模板题——dijkstra)

题目

该题就是dijkstra的一个模板,主要是要记住模板,和对模板的使用

AC代码:

import java.io.*;
import java.math.*;
import java.math.BigInteger;
import java.util.*;

public class Main {
	static final int N=1050;
	static final int INF=0x3f3f3f3f;
	static int u,v,w,s,t,n,m;
	static int arr[][]=new int [N][N];
	static int a[]=new int [N];
	static boolean bool[]=new boolean[N];
	public static void main(String[] args) {
		Scanner sc=new Scanner(System.in);
		for(;;) {
			
			n=sc.nextInt();//路口数量,1为商店所在地
			m=sc.nextInt();//路的数量
			if(n==0&&m==0)break;
			//A,B,C:AB之间有条路,需要时间C
			for(int i=0;i<N;i++) {
				for(int j=0;j<N;j++) {
					arr[i][j]=INF;
				}
			}
			for(int i=0;i<m;i++) {
				u=sc.nextInt();
				v=sc.nextInt();
				w=sc.nextInt();
				arr[u][v]=arr[v][u]=w;
			}
			s=1;
			t=n;
			dijkstra();
			System.out.println(a[t]);
		}
	}
	private static void dijkstra() {
		for(int i=1;i<N;i++) {
			a[i]=INF;
			bool[i]=false;
		}
		a[s]=0;
		for(int i=0;i<n;i++) {
			int k=-1;
			int min=INF;
			for(int j=1;j<=n;j++) {
				if(!bool[j]&&a[j]<min) {
					min=a[j];
					k=j;
				}
			}
			if(k==-1)break;
			bool[k]=true;
			for(int j=1;j<=n;j++) {
				if(!bool[j]&&a[k]+arr[k][j]<a[j]) {
					a[j]=a[k]+arr[k][j];
				}
			}
		}
	}
}
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值