YOLOv11 改进策略 | HWD:引入 Haar 小波变换,减少信息丢失

YOLOv11 改进策略 | HWD:引入 Haar 小波变换,减少信息丢失

介绍

在卷积神经网络(CNN)中,下采样(Downsampling)是降低特征图分辨率、扩大感受野的关键操作,通常通过最大池化(MaxPool)或步长为 2 的卷积(Strided Convolution)实现。然而,这些方法在降低分辨率的同时,往往会丢失图像中的高频细节信息(如边缘、纹理)和精确的空间位置信息,这可能对后续特征提取和目标检测精度产生不利影响,尤其是对于小目标和需要精细定位的任务。HWD(Haar Wavelet Downsampling)模块,作为一种假设的改进,旨在将 Haar 小波变换引入下采样过程,以一种更结构化的方式分解和保留特征信息,从而减少传统下采样造成的信息丢失,提升 YOLOv11(假设的未来版本)的性能。

引言

YOLO 系列算法通过连续的下采样层逐步提取多尺度的特征。下采样过程中的信息丢失是限制模型性能的一个潜在因素。特别是在骨干网络的前期阶段,过度的信息丢失可能导致模型难以从低分辨率特征图中恢复小目标或细粒度目标的细节信息。Haar 小波变换是一种简单的、可逆的数学工具,可以将信号分解为不同尺度和频率的成分(近似分量和细节分量)。将这种分解思想应用于特征图的下采样,可以不仅仅保留低频的近似信息(类似平均池化),还能捕捉到高频的细节信息(水平、垂直和对角线方向的变化),并将这些信息编码到下采样后的特征图中。HWD 模块正是利用这一特性,期望在降低特征图分辨率的同时,最大程度地保留原始特征的丰富信息,为 YOLOv11 提供更优质的输入特征,从而在整体上提升检测能力。

技术背景

传统下采样方法及其局限性
  • 最大池化 (MaxPool): 在一个区域内取最大值。保留了局部最强的特征,但丢弃了区域内其他所有信息,容易丢失细节且对位置敏感。
  • 步长为 2 的卷积 (Strided Convolution): 通过滑动步长为 2 的卷积核实现下采样。学习了一种下采样方式,但卷积本身是局部加权求和,同样可能平滑掉高频细节。

这些方法都是“有损压缩”,不可逆,且对信息丢失没有明确的控制机制。

小波变换 (Wavelet Transform)

小波变换是一种时频分析方法,它将信号分解为不同尺度和频率成分的小波函数组合。与傅里叶变换不同,小波变换具有时间和频率的局部性,非常适合分析非平稳信号。

Haar 小波变换

Haar 小波是最简单的一种小波。在一维情况下,它可以将一个信号分解为两部分:

  • 近似分量 (Approximation): 通过求和(低通滤波)。
  • 细节分量 (Detail): 通过求差(高通滤波)。

在二维图像处理中,2D Haar 小波变换通常通过对图像先进行水平方向的 Haar 变换,再对结果进行垂直方向的 Haar 变换来实现。这会将一个图像块分解为四个子块,分别代表:

  • LL (Low-Low): 水平低频,垂直低频(近似分量,类似缩略图)。
  • LH (Low-High): 水平低频,垂直高频(垂直方向的细节)。
  • HL (High-Low): 水平高频,垂直低频(水平方向的细节)。
  • HH (High-High): 水平高频,垂直高频(对角线方向的细节)。

通过这种分解,可以将原始信息(包括细节)编码到分辨率减半的四个子块中。

Motivation for HWD

HWD 的动机在于:

  • 减少信息丢失: 利用 Haar 小波变换将特征分解到不同的频率通道,保留传统下采样容易丢弃的高频细节信息。
  • 结构化下采样: 提供一种比 MaxPool 或步长卷积更具信息保留能力的下采样机制。
  • 可逆性 (潜在): 小波变换通常是可逆的,虽然在神经网络中可能不需要完全可逆,但这种思想有助于理解信息保留。
  • 高效性: Haar 小波计算简单,可以在神经网络中高效实现。
Hypothetical HWD Principle

假设 HWD 模块的工作原理如下:

  1. 2D Haar 小波分解: 对输入的特征图应用 2D Haar 小波变换。对于每个 2 × 2 2 \times 2 2×2 的输入区域,将其分解为 LL, LH, HL, HH 四个系数。
  2. 通道扩展: 将原始特征图的每个通道都进行 Haar 分解,生成 4 个通道(对应 LL, LH, HL, HH)。如果原始特征图有 C 个通道,分解后将得到 C * 4 个通道。同时,特征图的空间分辨率降低为原来的一半。
  3. 特征重排/融合: 将分解得到的 LL, LH, HL, HH 特征图在通道维度上进行重排或通过 1x1 卷积进行融合,生成最终的输出特征图。输出特征图的分辨率是输入的一半,通道数可以是 C * 4 或通过 1x1 卷积调整为期望的通道数。

应用使用场景

将 HWD 模块应用于 YOLOv11 的下采样层,可以显著提升其在以下场景中的性能:

  • 小目标检测: 在骨干网络早期阶段使用 HWD 进行下采样,可以更好地保留小目标的细节信息,提高小目标的检出率。
  • 检测具有精细纹理或边缘的目标: 高频细节信息的保留有助于模型识别和区分具有复杂纹理或清晰边缘的目标。
  • 需要精细定位的任务: 保留更准确的空间信息有助于提高目标边界框的定位精度。
  • 医学影像分析: 在需要识别细微病灶或结构的任务中,减少信息丢失非常重要。

不同场景下详细代码实现

以下提供使用 PyTorch 实现标准的下采样模块以及假设的 2D Haar 小波分解和 HWD 模块。

1. 标准下采样模块实现 (PyTorch)
import torch
import torch.nn as nn

class StandardDownsample(nn.Module):
    def __init__(self, in_channels, out_channels, mode='stride_conv'):
        super().__init__()
        if mode == 'stride_conv':
            self.downsample = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1, bias=False),
                nn.BatchNorm2d(out_channels),
                nn.SiLU()
            )
        elif mode == 'max_pool':
            # MaxPool doesn't change channel count, might need a conv before/after
            self.downsample = nn.MaxPool2d(kernel_size=2, stride=2)
            self.conv = nn.Sequential(
                 nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
                 nn.BatchNorm2d(out_channels),
                 nn.SiLU()
            )
        else:
            raise ValueError("mode must be 'stride_conv' or 'max_pool'")
        self.mode = mode

    def forward(self, x):
        if self.mode == 'max_pool':
            return self.conv(self.downsample(x))
        return self.downsample(x)

# 示例使用标准下采样
if __name__ == '__main__':
    input_tensor = torch.randn(1, 64, 40, 40)
    std_downsample_conv = StandardDownsample(in_channels=64, out_channels=128, mode='stride_conv')
    std_downsample_pool = StandardDownsample(in_channels=64, out_channels=128, mode='max_pool') # Note: might need channel adjustment logic
    
    output_tensor_conv = std_downsample_conv(input_tensor)
    output_tensor_pool = std_downsample_pool(input_tensor)

    print("Standard Downsample (Stride Conv) Output shape:", output_tensor_conv.shape) # Resolution halved, channels changed
    print("Standard Downsample (Max Pool + Conv) Output shape:", output_tensor_pool.shape) # Resolution halved, channels changed
2. 假设的 2D Haar 小波分解实现 (PyTorch)

实现 2D Haar 小波分解,将输入的 H × W H \times W H×W 特征图分解为四个分辨率为 H / 2 × W / 2 H/2 \times W/2 H/2×W/2 的特征图。

import torch
import torch.nn as nn
import torch.nn.functional as F

# 2D Haar Wavelet Decomposition (Conceptual)
class HaarDecomposition(nn.Module):
    def __init__(self):
        super().__init__()
        # Define Haar filters (Low-pass and High-pass for 1D)
        # Low-pass: [0.5, 0.5]
        # High-pass: [0.5, -0.5]
        # In 2D, we combine them:
        # LL: [[0.25, 0.25], [0.25, 0.25]]
        # LH: [[0.25, -0.25], [0.25, -0.25]]
        # HL: [[0.25, 0.25], [-0.25, -0.25]]
        # HH: [[0.25, -0.25], [-0.25, 0.25]]
        
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鱼弦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值