特殊数列小结

Lucas numbers L(n)

{2,1,3,4,7,11,18,29,47,76......}

$$
L(n)=L(n-1)+L(n-2)\\ for \ n\geq2 \ with\ L(0)=2 \ and\ L(1)=1
$$

Tribonacci number

{0,1,1,2,4,7,13,24,44,81……}

$$
T(n)=T(n-1)+T(n-2)+T(n-3)\\n\geq3
$$

Catalan number Cn

{1,1,2,5,14,42,132,429,1430,4862……}

$$
Cn=\frac{1}{n+1}C(2n,n)=\frac{(2n!)}{(n+1)!n!}=\prod_{k=2}^{n}\frac{n+k}{n}\\n\geq0
$$

Pell numbers Pn

{0,1,2,5,12,29,70,169,408,985,……}

$$
a(n)=2a(n-1)+a(n-2)\\for \ n\geq2\ with\ a(0)=0,a(1)=1
$$

Triangular numbers t(n)

{0,1,3,6,10,15,21,28,36,45,……}

$$
t(n)=C(n+1,2)=\frac{n(n+1)}{2}=1+2+……+n\\for\ n\geq1\ with \ t(0)=0(empty\ sum)
$$

Padonve sequence

{1,1,1,2,2,3,4,5,7,9,……}

$$
P(n)=P(n-2)+P(n-3)\\for\ n\geq3\ with\ P(0)=P(1)=P(2)=1
$$

Jacobsthal numbers

{0,1,1,3,5,11,21,43,85,171,341,……}

$$
a(n)=a(n-1)+2a(n-2)\\for\ n\geq2\ with\ a(0)=0,a(1)=1
$$

Wieferich primes

{1093,3511}

$$
Primes\ p \ staifying 2^{p-1}\equiv1(mod\ p^2)
$$

Narayana numbers

{1,1,11,3,1,1,6,6,1,1,10,20,10,1,……}

$$
\frac{1}{k}C(n-1,k-1)C(n,k-1)read\ by\ rows
$$

Euler-Mascheroni constant y

{5,7,7,2,1,5,6,6,4,9……}

Pronic numbers

{0,2,6,12,20,30,42,56,72,90,……}

$$
2t(n)=n(n+1),with\ n\geq0
$$

Decimal expansion---numbers

{1,3,2,4,7,1,7,9,5,7……}

$$
x^3-x-1
$$

Wolstenholme primes

{16843,2124679}

$$
Primes\ p\ satisfying\ C(2p-1,p-1)\equiv1(mod p^4)
$$

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值