你好 请问在Delphi中 怎样用NMUDP 传输文件 

用户询问如何使用Delphi自带的NMUDP组件进行文件传输。Delphi是一种编程语言,NMUDP组件可用于网络通信,这里聚焦于其文件传输的实现方式。

你好 我想用Delphi 自带的组件NMUDP 传输文件 ,请问怎样做

股票,证券等,用这个来发布行情数据,刷刷的。 UDP通信的优势 速度比TCP快。 UDP通信的缺点 一旦UDP包过大的话,也能正常工作。只是优势就丢失了。 idUdpClient 主要用于发送udp请求,在接收udp响应的时候是同步的,所以一定要设置超时,否则的话程序容易死。 idUpdServer 即能用于发送udp数据包,也能用于接收udp数据包。但是设计的主要目的还是用于收到udp数据包之后给于反馈。 UDP包的大小问题 资料1:以太网的MTU是1500字节,IP包头占20个字节,UDP首部占8个字节,也就是说实际数据应该小于1472字节. 资料2:鉴于Internet上的标准MTU值为576字节,所以我建议在进行Internet的UDP编程时.最好将UDP的数据长度控件在548字节(576-8-20)以内. 测试结果: 0-548字节:会完美的展现UDP协议的优势(速度刷刷的)。 大于1472字节以后的话,也可以正常执行。你会见识到什么叫做不可靠的信道(经过测试90%以上还是成功的,只是速度慢了很多)。 数据包大于2K速度明显变慢了;数据包大于3K,成功率60%到80%;数据包大于4k,成功率20%以下。 结论: 1.UDP协议还是比较可靠的。使用它能充分挖掘速度的潜力。通常大部分请求和相应都在548以下,小部分请求超过548。 2.548字节,可以存储274个汉字呢。比手机短信都长。你传什么那么大? 3.尤其是双方都在修改数据,需要实施数据实时同步的时候。修改量都比较小,用udp再合适不过了。 客户端的阻塞式响应不太理想 可以采用的办法是双方都开UDP服务器来接受。
卷积神经网络(CNN)是针对多维网格数据(如图像、视频)设计的深度学习架构,其结构灵感来源于生物视觉系统对信息的分层处理机制。该模型通过局部连接、参数共享、层级特征提取等策略,有效捕获数据中的空间模式。以下从结构特性、工作机制及应用维度展开说明: **1. 局部连接与卷积运算** 卷积层利用可学习的多维滤波器对输入进行扫描,每个滤波器仅作用于输入的一个有限邻域(称为感受野),通过线性加权与非线性变换提取局部特征。这种设计使网络能够聚焦于相邻像素间的关联性,从而识别如边缘走向、色彩渐变等基础视觉模式。 **2. 参数共享机制** 同一卷积核在输入数据的整个空间范围内保持参数不变,大幅降低模型复杂度。这种设计赋予模型对平移变换的适应性:无论目标特征出现在图像的任何区域,均可由相同核函数检测,体现了特征位置无关性的建模思想。 **3. 特征降维与空间鲁棒性** 池化层通过对局部区域进行聚合运算(如取最大值或均值)实现特征降维,在保留显著特征的同时提升模型对微小形变的容忍度。这种操作既减少了计算负荷,又增强了特征的几何不变性。 **4. 层级特征抽象体系** 深度CNN通过堆叠多个卷积-池化层构建特征提取金字塔。浅层网络捕获点线面等基础模式,中层网络组合形成纹理部件,深层网络则合成具有语义意义的对象轮廓。这种逐级递进的特征表达机制实现了从像素级信息到概念化表示的自动演进。 **5. 非线性扩展与泛化控制** 通过激活函数(如ReLU及其变体)引入非线性变换,使网络能够拟合复杂决策曲面。为防止过拟合,常采用权重归一化、随机神经元失活等技术约束模型容量,提升在未知数据上的表现稳定性。 **6. 典型应用场景** - 视觉内容分类:对图像中的主体进行类别判定 - 实例定位与识别:在复杂场景中标定特定目标的边界框及类别 - 像素级语义解析:对图像每个像素点进行语义标注 - 生物特征认证:基于面部特征的个体身份鉴别 - 医学图像判读:辅助病灶定位与病理分析 - 结构化文本处理:与循环神经网络结合处理序列标注任务 **7. 技术演进脉络** 早期理论雏形形成于1980年代,随着并行计算设备的发展与大规模标注数据的出现,先后涌现出LeNet、AlexNet、VGG、ResNet等里程碑式架构。现代研究聚焦于注意力分配、跨层连接、卷积分解等方向,持续推动模型性能边界。 卷积神经网络通过其特有的空间特征提取范式,建立了从原始信号到高级语义表达的映射通路,已成为处理几何结构数据的标准框架,在工业界与学术界均展现出重要价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值