第八章——向量代数与空间解析几何

文章详细介绍了三维空间中各种几何对象的方程表示,包括平面的点法式、一般式和截距式方程,直线的点向式方程,以及平面和直线之间的夹角计算。此外,还讨论了两平面的夹角和直线与平面的夹角的确定方法。内容涵盖了向量运算、平面和直线的性质及其相互关系。
摘要由CSDN通过智能技术生成

目录

一、运算公式

二、平面的点法式方程

三、直线的点向式方程

四、平面的一般方程

五、平面的截距式方程

六、两平面的夹角

七、直线与平面的夹角

八、曲面 


注:加粗体为向量

一、运算公式

1.若a//b,那么ab

   ab,那么a*b=0

2.若A(x1,y1,z1),B(x2,y2,z2)

   中点坐标:AB中点M(x1+x2/2,y1+y2/2,z1+z2/2)

   两点间的距离和模的计算:|AB|=|AB|=√(x2-x1)^2+(y2-y1)^2+(z2-z1)^2

3.a*b=|a|*|b|cosθ

   a*a=|a|^2

4.向量叉乘

   a×b=c

   |c|=|a||b|sinθ

   c的方向:垂直于ab所在平面

二、平面的点法式方程

平面的点法式方程需要的量是平面内的一个向量MM0和平面的法线向量n。M0为已知点,M为假设的点。

n=(A,B,C),M0=(x0,y0,z0),那么平面点法式方程为:

 平面的一般式

 平行于哪个轴,对应的A、B、C就为0。如果D=0,那么平面过原点。

例1:求平行于x0z面且经过点(2,-5,3)的平面方程。

例2:求过直线x-1/-1=y-1/0=z-1/-2并且垂直于平面x+y+z=0的平面方程。

直线过平面,则该直线上的每一个点都在此平面上,实际上计算该直线在平面上。

将(1,1,1)代入直线成立,说明(1,1,1)在直线上,也在平面上。

法向量垂直于该平面并且过一个点(我的理解)。

三、直线的点向式方程

直线的点向式方程需要的量是直线上的两个点,M0、M为假设的点和方向向量。

例1:求过点(1,-2,4)并且与平面2x-3y+z-4=0垂直的直线方程。

如图,sn平行,所以sn,此时λ=1。

例2:求过点(0,2,4)并且与两平面x+2z=1和y-3z=2平行的直线方程。

四、平面的一般方程

缺哪个量(A=0或B=0或C=0),就平行于(或包含于)此轴的平面。如果D=0,平面过原点。

比如:当A=0时,方程为By+Cz+D=0,此平面的法线向量为(0,B,C)垂直于x轴,方程平行于x轴或包含在x轴的平面。情况大概(一个特殊情况)如下图:

例1:求平行于x轴且经过两点(4,0,2)和(5,1,7)的平面方程。

五、平面的截距式方程

例1:上图中P(a,0,0),Q(0,b,0),R(0,0,c),求此平面的方程。

 利用平面的截距式,利于理解缺哪个量(A=0或B=0或C=0),就平行于(或包含于)此轴的平面。如果D=0,平面过原点。

六、两平面的夹角

两平面的夹角就相当于两平面法线向量的夹角。

七、直线与平面的夹角

定义:当直线与平面不垂直时,直线和它在平面上的投影直线的夹角(0≤φ<π/2)称为直线与平面的夹角。运用直线的方向向量和平面的法线向量,进而转化为线与线的夹角。

 设直线方向向量s=(m,n,p),平面法线向量n=(A,B,C)。

 π/2减去直线方向向量与平面法线向量的夹角就等于直线与平面的夹角φ。

sin(π/2-α)=cosα

 

 

八、曲面 

1.球面

2.旋转曲面

 3.柱面

 4.二次曲面

 

 

 

 

 

 

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑子不好真君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值