工程数学-线性代数-第六版-第三章—矩阵的初等变换与线性方程组

章节前言

本章先引进矩阵的初等变换,建立矩阵的秩的概念,并利用初等变换讨论矩阵的秩的性质;然后利用矩阵的秩讨论线性方程组无解、有惟一解或有无限多解的充分必要条件,并介绍用初等变换解线性方程组的方法。

也就是说,本章要讲这些:
①矩阵的初等变换
②矩阵的秩
③矩阵的秩的性质
④用矩阵的秩解线性方程组
⑤用初等变换解线性方程组

§1 矩阵的初等变换

小节前言

矩阵的初等变换是矩阵的一种十分重要的运算,它在解线性方程组、求逆矩阵及矩阵理论的讨论中都可以起重要的作用。为引进矩阵的初等变换,先来分析用消元法解线性方程组的例子。

引例





浅浅解读一下上述引例:

上述引例求线性方程组的解的方法为高斯消元法

高斯消元法


注意选取非自由未知数和自由未知数:把每个台阶的第一个未知数(即引例中的x1,x2,x4)选为非自由未知数,剩下的x3,选为自由未知数。

为什么可以这样求解?

注意引例末尾提到:那么上述对方程组的变换完全可以转换为对增广矩阵的变换。把方程组的上述三种同解变换移植到矩阵上,就得到矩阵的三种初等变换。

定义1


总结上图:
(1)定义1 下面三种变换称为矩阵的初等行变换:
    (i)对换两行(对换 i, j 两行,记作ri↔rj)
    (ii)以数k≠0乘某一行中的所有元(第 i 行乘 k,记作ri x k)
    (iii)把某一行所有元的 k 倍加到另一行对应的元上去(第 j 行的 k 倍加到第 i 行上,记作ri+krj)
(2)把定义中的 “行” 换成 “列” ,即得矩阵的初等列变换的定义(所用记号是把 “r” 换成 “c” )
(3)矩阵的初等行变换与初等列变换,统称初等变换
(4)三种初等变换都可逆,也就是说:可以除以一个数去做变换(第 i 行乘 1/k),也可以把某一行所有元的 -k 倍加到另一行对应的元上去(第 j 行的 k 倍加到第 i 行上,记作ri-krj)

(5)矩阵之间的等价关系具有下列性质:

下面用矩阵的初等行变换来解方程组(1)

下面用矩阵的初等行变换来解方程组(1),其过程可与方程组(1)的消元过程一一对照:
(同时也与高斯消元法的步骤一一对应)

定义2

行阶梯形矩阵和行最简形矩阵


(1)对于任何非零矩阵Amxn,总可经有限次初等行变换把它变为行阶梯形矩阵和行最简形矩阵。
(2)一个矩阵的行最简形矩阵是惟一确定的(行阶梯 形矩阵中非零行的行数也是惟一确定的)。

定理1

矩阵的初等行变换的基本性质

定义3

In order to prove theorem1




性质1

性质2


高斯-约旦消元法


意第④步得到的左边的矩阵就是可逆矩阵转换后的行最简形矩阵,是一个单位矩阵。

定理1的证明 

定理1的推论


上图证明中A可逆<=>存在可逆矩阵P,使得PA=E。实际上这个结论就是基于第二章中的定理2的推论,在书P40页。

例1

例1演示了如何使用高斯-约当消元法求逆矩阵。


例2

例2中的(A, E)矩阵左边已经化为了单位矩阵,此时右边的矩阵就是A的逆矩阵。

例1和例2的不同点

例1是把左边的矩阵化为行最简形,可以得到左边矩阵为 A的行最简形F 和 右边矩阵为 一个使得PA=F的可逆矩阵P。
例2是把左边的矩阵化为单位矩阵,右边得到的 A的逆矩阵。

例3

例3中,由矩阵A、B组成的矩阵叫做增广矩阵(A, B),当左边的矩阵A化为单位矩阵E时,右边就得到A^-1B。


例3的方法还可以用于求解线性方程组Ax=b,把增广矩阵(A, b)中的A矩阵部分化为行最简形矩阵,那么最后一列得到的就是该线性方程组的解。例4会具体显示。

例4

三种求解线性方程组的方法

到此为止,已经有了三种求解线性方程组的方法:
1. 克拉默法则(P45 例16)
2. 利用逆矩阵(P45 例16)
3. 高斯-约当消元法

线性代数书中求解线性方程组的三种方法的实例-CSDN博客

§2 矩阵的秩

小节引言


与B行等价的行阶梯形矩阵是什么意思?

“与 B 行等价的行阶梯形矩阵”指的是与 B 具有相同行空间(线性方程组解相同)的简化形式矩阵,通过行初等变换从 B 得到。

定义4


矩阵子式

”而它的任一四阶子式都将因含有零行而成为0”是什么意思

引理



之后的证明看不懂了,但记住结论:



矩阵的非零子式的阶数和矩阵的秩联系

定义5

矩阵的秩的定义:

矩阵的秩取决于矩阵最大非零子式的阶数


矩阵的秩是指矩阵中线性无关行(或列)的最大数量,或者说是矩阵中能够构成最大非零行列式的子矩阵的阶数。换句话说,矩阵的秩是可以形成的最大阶非零子式的阶数,而并不是取决于所有非零子式的个数


按字面意思理解即可



定理2


定理2推论


这里引出了求矩阵的秩的一个方法:依据定理2把矩阵化为行阶梯形矩阵来求秩是方便而有效的方法。下面的例子开始演示使用这个方法。

例5

例6

例7

矩阵秩的性质




先从矩阵的秩的定义开始说起,书上对于矩阵的秩的定义是矩阵最高阶非零子式的阶数,也就是将矩阵化为行阶梯形矩阵时,矩阵中非零行的数量。但是对矩阵的秩的定义还有:

秩的几何意义

除了需要了解矩阵中线性无关行(或列)向量的最大数量,还需要了解秩的几何意义:

线性无关的定义:

线性无关的定义推广到矩阵

例8

例9

对于例9的重要解读_1


举一个实例如下:

对于例9的重要解读_2


对上图加一点:④这个可逆矩阵P指的是一系列初等行变换.

§3 线性方程组的解


线性方程组有解:相容.
线性方程组无解:不相容.

定理3



例10

例10演示了用增广矩阵求齐次线性方程组的解。

例11

例11演示了用增广矩阵求非齐次线性方程组的解。


方程判断方程组解的情况——无解、惟一解、无穷解,请参照定理3

例12

例13

解法1

解法2

解法2只需要求出有惟一解的情况,除外的肯定是无解和无穷尽的情况,只需要验证即可,妙啊。
但解法2只适用于系数矩阵是方阵的情况。

定理4和定理5

定理6


定理7


习题三







第3题的第(2)小问我的Q与答案的Q不同,反复验证计算并没有错误,我想是因为:


为什么不能对(A ,E)同时使用初等行变换和初等列变换?

将(A,E)化为(E,A^-1)的核心方法




**************************************************************************************************************
**********重大错误**********
第(2)小问不能使用初等列变换来求解,必须转置B,因为A是一个3x3的矩阵,而B是一个2x3的矩阵,无法组成(A,B)。
**************************************************************************************************************



为什么初等行变换等价于左乘,初等列变换等价于右乘


实例(可以看到PA使A的第二行变成了原来的两倍,AP使A的第二列变为原来的两倍):





也就是说如果行向量(a,b,c,d)=c(x,y,n,m),那么这两行就是线性相关的。

**************************************************************************************************************
******重大存疑******

由于不知道如何用线性无关的定义判断矩阵整体行向量的线性关系,所以说判断矩阵的秩还是采用先化为行阶梯形,非零行数就是矩阵秩数的方法。
**************************************************************************************************************







(3)(4)方法相同,不一一计算了











矩阵可逆则方程组有唯一解



又因为当 |A|≠0 时矩阵可逆,所以说对于19题 |A|≠0 时 λ 的取值情况就是惟一解的情况,其余取值情况对应无解和无穷多解。19题解题过程如下:




参考资料

同济大学数学系. 工程数学 线性代数 第六版. 高等教育出版社. 2014
同济大学数学系. 线性代数 附册学习辅导与习题全解同济 第六版. 高等教育出版社. 2014
https://zh.wikipedia.org/wiki/%E9%AB%98%E6%96%AF%E6%B6%88%E5%8E%BB%E6%B3%95
高斯-若尔当消元法_百度百科
矩阵的迹、秩等问题的理解_矩阵的秩和迹-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑子不好真君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值