章节前言
本章先引进矩阵的初等变换,建立矩阵的秩的概念,并利用初等变换讨论矩阵的秩的性质;然后利用矩阵的秩讨论线性方程组无解、有惟一解或有无限多解的充分必要条件,并介绍用初等变换解线性方程组的方法。
也就是说,本章要讲这些:
①矩阵的初等变换
②矩阵的秩
③矩阵的秩的性质
④用矩阵的秩解线性方程组
⑤用初等变换解线性方程组
§1 矩阵的初等变换
小节前言
矩阵的初等变换是矩阵的一种十分重要的运算,它在解线性方程组、求逆矩阵及矩阵理论的讨论中都可以起重要的作用。为引进矩阵的初等变换,先来分析用消元法解线性方程组的例子。
引例
浅浅解读一下上述引例:
上述引例求线性方程组的解的方法为高斯消元法
高斯消元法
注意选取非自由未知数和自由未知数:把每个台阶的第一个未知数(即引例中的x1,x2,x4)选为非自由未知数,剩下的x3,选为自由未知数。
为什么可以这样求解?
注意引例末尾提到:那么上述对方程组的变换完全可以转换为对增广矩阵的变换。把方程组的上述三种同解变换移植到矩阵上,就得到矩阵的三种初等变换。
定义1
总结上图:
(1)定义1 下面三种变换称为矩阵的初等行变换:
(i)对换两行(对换 i, j 两行,记作ri↔rj)
(ii)以数k≠0乘某一行中的所有元(第 i 行乘 k,记作ri x k)
(iii)把某一行所有元的 k 倍加到另一行对应的元上去(第 j 行的 k 倍加到第 i 行上,记作ri+krj)
(2)把定义中的 “行” 换成 “列” ,即得矩阵的初等列变换的定义(所用记号是把 “r” 换成 “c” )
(3)矩阵的初等行变换与初等列变换,统称初等变换
(4)三种初等变换都可逆,也就是说:可以除以一个数去做变换(第 i 行乘 1/k),也可以把某一行所有元的 -k 倍加到另一行对应的元上去(第 j 行的 k 倍加到第 i 行上,记作ri-krj)
(5)矩阵之间的等价关系具有下列性质:

下面用矩阵的初等行变换来解方程组(1)
下面用矩阵的初等行变换来解方程组(1),其过程可与方程组(1)的消元过程一一对照:
(同时也与高斯消元法的步骤一一对应)
定义2
行阶梯形矩阵和行最简形矩阵

(1)对于任何非零矩阵Amxn,总可经有限次初等行变换把它变为行阶梯形矩阵和行最简形矩阵。
(2)一个矩阵的行最简形矩阵是惟一确定的(行阶梯 形矩阵中非零行的行数也是惟一确定的)。
定理1
矩阵的初等行变换的基本性质
定义3
In order to prove theorem1
性质1
性质2
高斯-约旦消元法
注意第④步得到的左边的矩阵就是可逆矩阵转换后的行最简形矩阵,是一个单位矩阵。
定理1的证明
定理1的推论
上图证明中A可逆<=>存在可逆矩阵P,使得PA=E。实际上这个结论就是基于第二章中的定理2的推论,在书P40页。
例1
例1演示了如何使用高斯-约当消元法求逆矩阵。
例2
例2中的(A, E)矩阵左边已经化为了单位矩阵,此时右边的矩阵就是A的逆矩阵。
例1和例2的不同点
例1是把左边的矩阵化为行最简形,可以得到左边矩阵为 A的行最简形F 和 右边矩阵为 一个使得PA=F的可逆矩阵P。
例2是把左边的矩阵化为单位矩阵,右边得到的 A的逆矩阵。
例3
例3中,由矩阵A、B组成的矩阵叫做增广矩阵(A, B),当左边的矩阵A化为单位矩阵E时,右边就得到A^-1B。
例3的方法还可以用于求解线性方程组Ax=b,把增广矩阵(A, b)中的A矩阵部分化为行最简形矩阵,那么最后一列得到的就是该线性方程组的解。例4会具体显示。
例4
三种求解线性方程组的方法
到此为止,已经有了三种求解线性方程组的方法:
1. 克拉默法则(P45 例16)
2. 利用逆矩阵(P45 例16)
3. 高斯-约当消元法
§2 矩阵的秩
小节引言

与B行等价的行阶梯形矩阵是什么意思?
“与 B 行等价的行阶梯形矩阵”指的是与 B 具有相同行空间(线性方程组解相同)的简化形式矩阵,通过行初等变换从 B 得到。
定义4

矩阵子式

”而它的任一四阶子式都将因含有零行而成为0”是什么意思

引理
之后的证明看不懂了,但记住结论:


矩阵的非零子式的阶数和矩阵的秩联系

定义5
矩阵的秩的定义:
矩阵的秩取决于矩阵最大非零子式的阶数
矩阵的秩是指矩阵中线性无关行(或列)的最大数量,或者说是矩阵中能够构成最大非零行列式的子矩阵的阶数。换句话说,矩阵的秩是可以形成的最大阶非零子式的阶数,而并不是取决于所有非零子式的个数。
按字面意思理解即可
定理2
定理2推论
这里引出了求矩阵的秩的一个方法:依据定理2把矩阵化为行阶梯形矩阵来求秩是方便而有效的方法。下面的例子开始演示使用这个方法。
例5
例6
例7
矩阵秩的性质
先从矩阵的秩的定义开始说起,书上对于矩阵的秩的定义是矩阵最高阶非零子式的阶数,也就是将矩阵化为行阶梯形矩阵时,矩阵中非零行的数量。但是对矩阵的秩的定义还有:
秩的几何意义
除了需要了解矩阵中线性无关行(或列)向量的最大数量,还需要了解秩的几何意义:
线性无关的定义:
线性无关的定义推广到矩阵


例8
例9
对于例9的重要解读_1
举一个实例如下:
对于例9的重要解读_2
对上图加一点:④这个可逆矩阵P指的是一系列初等行变换.
§3 线性方程组的解
线性方程组有解:相容.
线性方程组无解:不相容.
定理3
例10
例10演示了用增广矩阵求齐次线性方程组的解。
例11
例11演示了用增广矩阵求非齐次线性方程组的解。
方程判断方程组解的情况——无解、惟一解、无穷解,请参照定理3
例12
例13
解法1
解法2
解法2只需要求出有惟一解的情况,除外的肯定是无解和无穷尽的情况,只需要验证即可,妙啊。
但解法2只适用于系数矩阵是方阵的情况。
定理4和定理5
定理6
定理7
习题三
第3题的第(2)小问我的Q与答案的Q不同,反复验证计算并没有错误,我想是因为:
为什么不能对(A ,E)同时使用初等行变换和初等列变换?

将(A,E)化为(E,A^-1)的核心方法

**************************************************************************************************************
**********重大错误**********
第(2)小问不能使用初等列变换来求解,必须转置B,因为A是一个3x3的矩阵,而B是一个2x3的矩阵,无法组成(A,B)。
**************************************************************************************************************
为什么初等行变换等价于左乘,初等列变换等价于右乘
实例(可以看到PA使A的第二行变成了原来的两倍,AP使A的第二列变为原来的两倍):
也就是说如果行向量(a,b,c,d)=c(x,y,n,m),那么这两行就是线性相关的。
**************************************************************************************************************
******重大存疑******
由于不知道如何用线性无关的定义判断矩阵整体行向量的线性关系,所以说判断矩阵的秩还是采用先化为行阶梯形,非零行数就是矩阵秩数的方法。
**************************************************************************************************************
(3)(4)方法相同,不一一计算了
矩阵可逆则方程组有唯一解
又因为当 |A|≠0 时矩阵可逆,所以说对于19题 |A|≠0 时 λ 的取值情况就是惟一解的情况,其余取值情况对应无解和无穷多解。19题解题过程如下:
参考资料
同济大学数学系. 工程数学 线性代数 第六版. 高等教育出版社. 2014
同济大学数学系. 线性代数 附册学习辅导与习题全解同济 第六版. 高等教育出版社. 2014
https://zh.wikipedia.org/wiki/%E9%AB%98%E6%96%AF%E6%B6%88%E5%8E%BB%E6%B3%95
高斯-若尔当消元法_百度百科
矩阵的迹、秩等问题的理解_矩阵的秩和迹-CSDN博客