高等数学-第七版-上册-第一章函数与极限——第八节 函数的连续性与间断性

第一章函数与极限——第八节 函数的连续性与间断性

一、函数的连续性

小节前言

总结归纳

这段文字主要说明:

1.自然界中许多现象(如气温、河水、植物生长)都是连续变化的
2.这种连续变化反映到函数上就是函数的连续性
3.文章将通过引入增量概念来定义函数的连续性

连续性的概念

归纳总结

连续性的定义1

连续性的定义2


★定义1与定义2对于函数连续性表达的异同点

相同点

不同点

第一种定义可能更有助于初学者理解连续性的直观含义,而第二种定义在数学推导和证明中更常用。

ε-δ表达连续性的定义2

左极限和右极限的概念

总结归纳

左端点只需要右连续,右端点只需要左连续是什么意思?

在 x=a 的左侧,函数可以是任意的或者不定义的,我们不关心,我们只关心 x=a 点本身的函数值和从右侧趋近时的极限。

连续函数的图形

有理整函数与有理分式函数的连续性

有理整函数(多项式函数)的定义

有理分式函数的定义

★从图中获得两个重要结论


有理整函数在区间(-∞, +∞)内都是连续的;有理分式函数在其定义域内的每一点都是连续的。

证明 y=sinx 在(-∞, +∞)内是连续的

证明步骤


当 Δx→0时,由夹逼准则可知 ∣Δy∣→0。这是运用了连续性的定义1证明

为什么 α≠0 时有 |sinα|<|α|?

|sin α| 表示正弦值的绝对值,|α| 表示角度(弧度)的绝对值。

举例说明 ∣sinα∣<∣α∣(当 α≠0)

二、函数的间断点

间断点的三种情况

间断点类型总结

例1-无穷间断点

例2-振荡间断点

例3-可去间断点1

例4-可去间断点2

例5-跳跃间断点

函数间断点的分类

习题 1-8

1.

2.

3.



★判断间断点的方法


上述方法适用于题目给出的是分段函数,对于一般形式的函数:先判断在某点函数是否有定义,若无定义,则为间断点,再判断间断点处的极限,若极限存在则为第一类间断点,若极限不存在则为第二类间断点。

4.



5.

复合函数的连续性定理

★反例1中,为什么在x=0处f(x)不连续?

*6.

通过连续性的定义直接证明

用反证法来证明

*7.

*8.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑子不好真君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值