第一章函数与极限——第八节 函数的连续性与间断性
一、函数的连续性
小节前言
总结归纳
这段文字主要说明:
1.自然界中许多现象(如气温、河水、植物生长)都是连续变化的
2.这种连续变化反映到函数上就是函数的连续性
3.文章将通过引入增量概念来定义函数的连续性
连续性的概念
归纳总结
连续性的定义1
连续性的定义2
★定义1与定义2对于函数连续性表达的异同点
相同点

不同点

第一种定义可能更有助于初学者理解连续性的直观含义,而第二种定义在数学推导和证明中更常用。
ε-δ表达连续性的定义2
左极限和右极限的概念
总结归纳
左端点只需要右连续,右端点只需要左连续是什么意思?
在 x=a 的左侧,函数可以是任意的或者不定义的,我们不关心,我们只关心 x=a 点本身的函数值和从右侧趋近时的极限。
连续函数的图形
有理整函数与有理分式函数的连续性
有理整函数(多项式函数)的定义

有理分式函数的定义

★从图中获得两个重要结论
有理整函数在区间(-∞, +∞)内都是连续的;有理分式函数在其定义域内的每一点都是连续的。
证明 y=sinx 在(-∞, +∞)内是连续的
证明步骤
当 Δx→0时,由夹逼准则可知 ∣Δy∣→0。这是运用了连续性的定义1证明。
为什么 α≠0 时有 |sinα|<|α|?
|sin α| 表示正弦值的绝对值,|α| 表示角度(弧度)的绝对值。
举例说明 ∣sinα∣<∣α∣(当 α≠0)

二、函数的间断点
间断点的三种情况
间断点类型总结
例1-无穷间断点
例2-振荡间断点
例3-可去间断点1
例4-可去间断点2
例5-跳跃间断点
函数间断点的分类
习题 1-8
1.


2.


3.




★判断间断点的方法
上述方法适用于题目给出的是分段函数,对于一般形式的函数:先判断在某点函数是否有定义,若无定义,则为间断点,再判断间断点处的极限,若极限存在则为第一类间断点,若极限不存在则为第二类间断点。